Advertisement

Izvestiya, Atmospheric and Oceanic Physics

, Volume 54, Issue 11, pp 1559–1568 | Cite as

Variations in the Kinematics of Deformation in the Vicinity of the Catastrophic Sumatra Earthquake

  • A. A. LukkEmail author
  • V. G. Leonova
Article

Abstract—

The Great Andaman–Sumatra earthquake (GASE) on December 26, 2004, with magnitude Mw of 9.2, occurred in the Indian Ocean near the northwestern coast of Sumatra Island at a depth of 30 km and is the third-largest earthquake of the historical world seismic observations. The surface rupture of 1200–1600 km provoked a right-lateral strike-slip fault at a distance of 15 m along the subduction zone of the Indian Plate beneath the Sunda arc in the west of the Southeast Asia (Melanesia) and the Burma Plate (part of the larger Eurasian Plate) in the north. It is suggested that such a strong event should be reflected in variations in the long-term type of seismotectonic deformation (STD) in its vicinity. The aim of this work is the search for these deformations. The STD type in the GASE spatial-temporal vicinity is estimated on the basis of a set of focal mechanisms of earthquakes with Mw ≥ 5 published in the ISC catalog. The long-term estimations of the STD type are consistent with current ideas on the character of collision of tectonic plates in the western part of the Sunda arc and support the geological ideas on near-horizontal compression (shortening) across the arc in the nearest vicinity of the earthquake epicenter. At the same time, variations in the STD type are noticeable in comparison with long-term estimations in different periods relative to the time of the GASE. These variations can be explained by the change in the kinematics of deformation at different stages of evolution of the deformation process in the spatial-temporal vicinity of the strongest seismic catastrophe. In a control sample to the south of the territory studied (without rupture during the earthquake), the type of STD underwent no noticeable changes during the entire period considered.

Keywords:

focal mechanisms seismotectonic deformation (STD) kinematic of deformation temporal variations Great Andaman-Sumatra earthquake Indo-Australian subduction 

Notes

ACKNOWLEDGMENTS

This work was supported by State Contract of the Schmidt Institute of Physics of the Earth, Russian Academy of Sciences for 2017–2019 “Complex Study of Regional Features of Deep Structure of the Earth, Tectonic, Seismicity, Data on Geophysical Monitoring, and Principles of Radiation and Propagation of Seismic Waves for Revealing the Mechanisms of Seismogenesis” (no. 0144-2019-0010).

REFERENCES

  1. 1.
    Araki, E., Shinohara, M., Obana, K., Yamada, T., Kaneda, Y., Kanazawa, T., and Suyehiro, K., Aftershock distribution of the 26 December 2004 Sumatra–Andaman earthquake from ocean bottom seismographic observation, Earth Planets Space, 2006, vol. 58, pp. 113–119.CrossRefGoogle Scholar
  2. 2.
    Balakina, L.M. and Moskvina, A.G., Andaman–Sumatra Island arc: 1. Spatiotemporal manifestations and focal mechanisms of the earthquakes, Izv., Phys. Solid Earth, 2012, vol. 48, no. 2, pp. 117–154.CrossRefGoogle Scholar
  3. 3.
    Balakina, L.M. and Moskvina, A.G., Andaman–Sumatra Island arc: 2. The December 26, 2004 earthquake as one of the key episodes in seismogenic activation of the arc in the beginning of XXI century, Izv., Phys. Solid Earth, 2013, vol. 49, no. 2, pp. 205–242.CrossRefGoogle Scholar
  4. 4.
    Banerjee, P., Pollitz, F., Nagarajan, B., and Burgmann, R., Coseismic slip distribution of the 26 December 2004 Sumatra–Andaman and 28 March 2005 Nias earthquakes from GPS static offsets, Bull. Seismol. Soc. Am., 2007, vol. 97, no. 1, pp. 86–102.CrossRefGoogle Scholar
  5. 5.
    Bilham, R., A flying start, then slow slip, Science, 2005, vol. 308, no. 5725, pp. 1126–1127.CrossRefGoogle Scholar
  6. 6.
    Briggs, R.W., Sieh, K., Meltzner, A.J., Natawidjaja, D., Galetzka, J., et al., Deformation and slip along the Sunda Megathrust in the great 2005 Nias-Simeulue earthquake, Science, 2006, vol. 311, no. 5769, pp. 1897–1901.CrossRefGoogle Scholar
  7. 7.
    Cochran, J.R., Morphology and tectonics of the Andaman forearc, Northeastern Indian Ocean, Geophys. J. Int., 2010, vol. 182, no. 2, pp. 631–651. doi 10.1111/j.1365-246X.2010.04663.XCrossRefGoogle Scholar
  8. 8.
    Curray, J.R., Tectonics and history of the Andaman Sea region, J. Asian Earth Sci., 2005, vol. 25, no. 1, pp. 187–228. doi 10.1016/j.jseaes.2004.09.001CrossRefGoogle Scholar
  9. 9.
    Curray, J., Moore, D.G., Lawver, L.A., Emmel, F.J., Raitt, R.W., Henry, M., and Kieckhefer, R., Tectonics of the Andaman Sea and Burma: Geological and geophysical investigations of continental margins, Am. Assoc. Petrol. Geol. Mem., 1979, vol. 29, pp. 189–198.Google Scholar
  10. 10.
    Diehl, T., Waldhauser, F., Cochran, J.R., Kamesh Raju, K.A., Seeber, L., Schaff, D., and Engdahl, E.R., Back-arc extension in the Andaman Sea: Tectonic and magmatic processes imaged by high-precision teleseismic double-difference earthquake relocation, J. Geophys. Res.: Solid Earth, 2013, vol. 118, pp. 1–19. doi 10.1002/jgrb.50192CrossRefGoogle Scholar
  11. 11.
    Gahalaut, V.K., Nagarajan, B., Catherine, J.K., and Kumar, S., Constrains on 2004 Sumatra–Andaman earthquake from GPS measurements in Andaman–Nicobar Islands, Earth and Planet. Sci. Lett., 2006, vol. 242, nos. 3–4, pp. 365–374.CrossRefGoogle Scholar
  12. 12.
    Hashimoto, M., Crustal deformations associated with the Sumatra earthquake on December 26, 2004. 2005. http://www.rcep.dpri.kyoto-u.ac.jp/~hasimoto/Manabu/ sumatraEQ_e.htm.Google Scholar
  13. 13.
    Hsu, Y.-J., Simons, M., Avouac, J.-P., Galetzka, J., Sieh, K., Chlieh, M., Natawidjaja, D., Prawirodirdjo, L., and Bock, Y., Frictional afterslip following the 2005 Nias-Simeulue earthquake, Sumatra, Science, 2006, vol. 312, no. 5782, pp. 1921–1926.CrossRefGoogle Scholar
  14. 14.
    International Seismological, Centre. http://www.isc.ac.uk.Google Scholar
  15. 15.
    Ishii, M., Shearer, P.M., Houston, H., and Vidale, J.E., Extent, duration and speed of the 2004 Sumatra–Andaman earthquake imaged by the Hi-Net array, Nature, 2005, vol. 435, no. 7044, pp. 933–936.CrossRefGoogle Scholar
  16. 16.
    Konca, A.O., Hjorleifsdottir, V., Song, T.-R.A., Avouac, J.-P., Helmberger, D.V., Ji, C., Sieh, K., Briggs, R., and Meltzner, A., Rupture kinematics of the 2005 M w 8.6 Nias-Simeulue earthquake from the joint inversion of seismic and geodetic data, Bull. Seismol. Soc. Am., 2007, vol. 91, no. 1A, pp. 307–322.CrossRefGoogle Scholar
  17. 17.
    Kreemer, C., Blewitt, G., and Maerten, F., Co- and postseismic deformation of the 28 March 2005 Nias M w 8.7 earthquake from GPS data, J. Geophys. Res., 2006, vol. 33, no. 7, L073071-4.Google Scholar
  18. 18.
    Kruger, F. and Ohrnberger, M., Tracking the rupture of the M w = 9.3 Sumatra earthquake over 1,150 km at teleseismic distance, Nature, 2005, vol. 435, no. 7044, pp. 937–939.CrossRefGoogle Scholar
  19. 19.
    Lay, Th., Kanamori, H., Ammon, Ch.J., Nettles, M., Ward, S.N., et al., The great Sumatra–Andaman earthquake of 26 December 2004, Science, 2005, vol. 308, pp. 1127–1133.CrossRefGoogle Scholar
  20. 20.
    Lukk, A.A. and Yunga, S.L., Geodinamika i napryazhenno-deformirovannoe sostoyanie litosfery Srednei Azii (Geodynamics and Stress-Deformation State of the Lithosphere of Middle Asia), Dushanbe: Donish, 1988.Google Scholar
  21. 21.
    Lukk, A.A. and Yunga, S.L., Seismotectonic deformation the Garm area, Izv. Akad. Nauk SSSR, Fiz. Zemli, 1979, no. 10, pp. 24–43.Google Scholar
  22. 22.
    McCaffrey, R., The tectonic framework of the Sumatran subduction zone, Ann. Rev. Earth Planet. Sci., 2009, vol. 37, pp. 345–366. doi 10.1146/ annurev.earth.031208.100212CrossRefGoogle Scholar
  23. 23.
    McCaffrey, R., Zwick, P., Bock, Y., Prawirodirdjo, L., Genrich, J., Puntodewo, S.S.O., and Subarya, C., Strain partitioning during oblique plate convergence in northern Sumatra: Geodetic and seismologic constraints and numerical modeling, J. Geophys. Res., 2000, vol. 105, pp. 28 363–28 376.CrossRefGoogle Scholar
  24. 24.
    Metcalfe, I., Tectonic framework and Phanerozoic evolution of Sundaland, Gondwana Res., 2011, vol. 19, pp. 3–21.CrossRefGoogle Scholar
  25. 25.
    Michel, G.W., Becker, M., Angermann, D., Reigber, Chr., and Reinhart, E., Crustal motion in E- and SE-Asia from GPS measurements, Earth Planets Space, 2000, vol. 52, pp. 713–720.CrossRefGoogle Scholar
  26. 26.
    Michel, G.W., Yu, Y.Q., Zhu, Sh.Y., Reigber, Chr., Becker, M., Reinhart, E., Simons, W., Ambrosius, B., Vigny, Chr., and Chamot-Rooke, N., Le Pichon, X., Morgan, P., and Matheussen, S., Crustal motion and block behaviour in SE-Asia from GPS measurements, Earth Planet. Sci. Lett., 2001, vol. 187, pp. 239–244.CrossRefGoogle Scholar
  27. 27.
    Molnar, P. and Tapponnier, P., Cenozoic tectonics of Asia: Effects of a continental collision, Science, 1975, vol. 189, pp. 419–426.CrossRefGoogle Scholar
  28. 28.
    Nikitin, L.V. and Yunga, S.L., Methods for theoretical determination of deformations and stresses in seismoactive regions, Izv. Akad. Nauk SSSR, Fiz. Zemli, 1977, no. 11, pp. 54–67.Google Scholar
  29. 29.
    Rebetskii, Yu.L. and Marinin, A.B., Stressed state before and after the catastrophic Sumatra earthquake on December 26, 2004, in Sovremennaya geodinamika i opasnye prirodnye protsessy v Tsentral’noi Azii (Modern Geodynamics and Dangerous Natural Processes in Central Asia), Irkutsk, 2005, vol. 3, pp. 149–152.Google Scholar
  30. 30.
    Rebetskii, Yu.L. and Marinin, A.B., Stressed state of the Earth’s crust in the western region of the Sunda subduction zone before the Sumatra–Andaman earthquake on December 26, 2004, Dokl. Earth Sci., 2006, vol. 407, no. 2, pp. 321–325.CrossRefGoogle Scholar
  31. 31.
    Scalera, G., Geodynamics of the Wadati–Benioff zone earthquakes: The 2004 Sumatra earthquake and other great earthquakes, Geopfís. Int., 2006, vol. 46, no. 1, pp. 19–50.Google Scholar
  32. 32.
    Shen, Z.-K., Lu, J., Wang, M., and Burgmann, R., Contemporary crustal deformation around the southeast borderland of the Tibetan Plateau, J. Geophys. Res., 2005, vol. 110, B11409. doi 10.1029/2004JB003421CrossRefGoogle Scholar
  33. 33.
    Singh, S.C., Hananto, N.D., Chauhan, A.P.S., Permana, H., Denolle, M., Hendriyana, A., and Natawidjaja, D., Evidence of active backthrusting at the NE margin of Mentawai Islands, SW Sumatra, Geophys. J. Int., 2010, vol. 180, no. 2, pp. 703–714.CrossRefGoogle Scholar
  34. 34.
    Subarya, C., Chlien, M., Prawirodirdjo, L., Avouac, J.-P., Bock, Y., Sieh, K., Meltzner, A.J., Natawidjaja, D., and McCaffrey, R., Plateboundary deformation associated with the Great Sumatra–Andaman earthquake, Nature, 2006, vol. 440, no. 7080, pp. 46–51.CrossRefGoogle Scholar
  35. 35.
    Sumatra earthquake 12-26-2004. 2005. http://www.rpi. edu/-mccafr/sumatra04/.Google Scholar
  36. 36.
    Tapponnier, P. and Molnar, P., Major strike-slip faulting in China: Its significance for Asian tectonics, Seismol. Soc. Am. Ann. Meet., 1975, vol. 7, pp. 425–426.Google Scholar
  37. 37.
    Vigny, C., Simons, W.J.F., Abu, S., et al., Insight into the 2004 Sumatra–Andaman earthquake from GPS measurements in Southeast Asia, Nature, 2005, vol. 436, no. 7048, pp. 201–206.CrossRefGoogle Scholar
  38. 38.
    Yunga, S.L., Metody i rezul’taty izucheniya seismotektonicheskikh deformatsii (Methods and Results of Seismotectonic Deformation Studies), Moscow: Nauka, 1990.Google Scholar
  39. 39.
    Yunga, S.L., On the mechanism of deformation of seismoactive amount of the Earth crust, Izv. Akad. Nauk SSSR: Fiz. Zemli, 1979, no. 10, pp. 14–23.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Schmidt Institute of Physics of the Earth, Russian Academy of SciencesMoscowRussia

Personalised recommendations