Nonlinear Gravitational Waves and Atmospheric Instability
Abstract—
This is an outline of the main results of the study of dust devils (a type of atmospheric vortices) with a focus on the mechanism of vortex generation in an unstable stratified atmosphere. In the approximation of ideal hydrodynamics, a new nonlinear model of the generation of convective motions and dust devils in an unstable stratified atmosphere has been developed. Using nonlinear equations for internal gravity waves, the model of generation of convective cell plumes has been investigated in the axially symmetric approximation. It has been shown that, in a convectively unstable atmosphere with large-scale seed vorticity, the plumes extremely rapidly generate small-scale intense vertical vortices. The structure of radial, vertical, and toroidal velocity components in these vortices has been investigated. The structure of vertical vorticity and toroidal velocity in vortex areas that are limited by radius has been examined.
Keywords:
atmosphere vortices model of vortices nonlinear structures ideal hydrodynamicsNotes
ACKNOWLEDGMENTS
This work was supported by the Presidium of the Russian Academy of Sciences, program no. 28, within the state task of the Schmidt Institute of Physics of the Earth, Russian Academy of Sciences.
REFERENCES
- 1.Balme, M. and Greeley, R., Dust devils on Earth and Mars, Rev. Geophys., 2006, vol. 44, RG3003. doi 10.1029/ 2005RG000188CrossRefGoogle Scholar
- 2.Bluestein, H.B., Weiss, C.C., and Pazmany, A.L., Doppler radar observations of dust devils in Texas, Mon. Weather Rev., 2004, vol. 132, pp. 209– 224.CrossRefGoogle Scholar
- 3.Dutton, J.A., Dynamics of Atmospheric Motions, New York: Dover, 1986.Google Scholar
- 4.Fritts, D.C. and Alexander, M., Gravity wave dynamics and effects in the middle atmosphere, Rev. Geophys., 2003, vol. 41, no. 1, pp. 1003–1065. doi 10.1029/ 2001RG000106CrossRefGoogle Scholar
- 5.Jickells, T.D., Nutrient biogeochemistry of the coastal zone, Science, 1998, vol. 281, no. 5374, pp. 217–222. doi 10.1126/science.281.5374.217CrossRefGoogle Scholar
- 6.Jickells, T.D., An, Z.S., Andersen, K.K., Baker, A.R., Bergametti, G., Brooks, N., Cao, J.J., Boyd, P.W., Duce, R.A., Hunter, K.A., Kawahata, H., Kubilay, N., Liss, P.S., Mahowald, N., Prospero, J.M., Ridgwell, A.J., Tegen, I., and Torres, R., Global iron connections between desert dust, ocean biogeochemistry, and climate, Science, 2005, vol. 308, no. 5718, pp. 67–71. doi 10.1126/science.1105959CrossRefGoogle Scholar
- 7.Kurgansky, M.V., A simple model of dry convective helical vortices (with applications to the atmospheric dust devil), Dyn. Atmos. Oceans, 2005, vol. 40, pp. 151–162.CrossRefGoogle Scholar
- 8.Kurgansky, M., Lorenz, R., Renno, N., Takemi, T., Wei, W., and Gu, Z., Dust devil steady-state structure from a fluid dynamics perspective, Space Sci. Rev., 2016, vol. 203, nos. 1–4, pp. 209–244.CrossRefGoogle Scholar
- 9.Mahowald, N., Ward, D.S., Kloster, S., Flanner, M.G., Heald, C.L., Heavens, N.G., Hess, P.G., Lamarque, J.-F., and Chuang, P.Y., Aerosol impacts on climate and biogeochemistry, Ann. Rev. Environ. Res., 2011, vol. 36, pp. 45–74.CrossRefGoogle Scholar
- 10.Mitchell, N.J. and Howells, V.S.C., Vertical velocities associated with gravity waves measured in the mesosphere and lower thermosphere with the EISCAT VLF radar, Ann. Geophys., 1998, vol. 16, pp. 1367–1379. doi 10.1007/s00585-998-1367-0CrossRefGoogle Scholar
- 11.Oke, A.M.C., Tapper, N.J., and Dunkerley, D., Willy-willies in the Australian landscape: The role of key meteorological variables and surface conditions in defining frequency and spatial characteristics, J. Arid Environ., 2007, vol. 71, pp. 201–215.CrossRefGoogle Scholar
- 12.Onishchenko, O.G. and Pokhotelov, O.A., Generation of zonal structures by internal gravity waves in the Earth’s atmosphere, Dokl. Earth Sci., 2012, vol. 445, no. 1, pp. 845–848.CrossRefGoogle Scholar
- 13.Onishchenko, O.G., Pokhotelov, O.A., and Astaf’eva, N.M., Generation of large-scale eddies and zonal winds in planetary atmospheres, Phys.-Usp., 2008, vol. 51, no. 6, pp. 577–590.CrossRefGoogle Scholar
- 14.Onishchenko, O.G., Pokhotelov, O.A., and Astaf’eva, N.M., Eddies of internal gravity waves in the atmosphere with zonal wind, Sovrem. Probl. Zondirovaniya Zemli Kosmosa, 2012, vol. 9, no. 2, pp. 187–191.Google Scholar
- 15.Onishchenko, O.G., Pokhotelov, O.A., and Astaf’eva, N.M., Convective cells of inner gravity waves in the Earth’s atmosphere with zonal wind, Geofiz. Issled., 2013a, vol. 14, no. 3, pp. 5–9.Google Scholar
- 16.Onishchenko, O., Pokhotelov, O., and Fedun, V., Convective cells of inertial gravity waves in the Earth’s atmosphere with finite temperature gradient, Ann. Geophys., 2013b, vol. 31, pp. 459–462. doi 10.5194/angeo-31-459-2013CrossRefGoogle Scholar
- 17.Onishchenko, O.G., Horton, W., Pokhotelov, O.A., and Stenflo, L., Dust devil generation, Phys Scr., 2014a, vol. 89, no. 7, p. 075606.CrossRefGoogle Scholar
- 18.Onishchenko, O.G., Pokhotelov, O.A., Horton, W., Smolyakov, A.I., Kaladze, T.D., and Fedun, V.N., Rolls of the internal gravity waves in the Earth’s atmosphere, Ann. Geophys., 2014b, vol. 32, pp. 181–186. doi 10.5194/angeo-32-181-2014CrossRefGoogle Scholar
- 19.Onishchenko, O.G., Pokhotelov, O.A., and Fedun, V., Convection cells of internal gravity waves in the terrestrial atmosphere, Dokl. Earth Sci., 2014c, vol. 454, no. 1, pp. 37–39.CrossRefGoogle Scholar
- 20.Onishchenko, O.G., Pokhotelov, O.A., and Astaf’eva, N.M., Convective cells of inertial gravity waves in the vicinity of the mesopause, Geofiz. Issled., 2015a, vol. 16, no. 3, pp. 5–11.Google Scholar
- 21.Onishchenko, O.G., Pokhotelov, O.A., and Horton, W., Dust devil dynamics in the internal vortex region, Phys. Scr., 2015b, vol. 90, p. 068004. doi 10.1088/0031-8949/90/6/068004CrossRefGoogle Scholar
- 22.Onishchenko, O.G., Pokhotelov, O.A., Horton, W., and Fedun, V., Explosively growing vortices of unstably stratified atmosphere, J. Geophys. Res.: Atmos., 2016, vol. 121, pp. 7197–7214. doi 10.1002/2016JD025961Google Scholar
- 23.Rafkin, S., Jemmett-Smith, B., Fenton, L., Lorenz, R., Takemi, T., Ito, J., and Tyler, D., Dust devil formation, Space Sci. Rev., 2016, vol. 203, nos. 1–4, pp. 183–207.CrossRefGoogle Scholar
- 24.Ramanathan, V., Crutzen, P.J., Kiehl, J.T., and Rosenfeld, D., Atmosphere: Aerosols, climate, and the hydrological cycle, Science, 2001, vol. 294, pp. 2119–2124.CrossRefGoogle Scholar
- 25.Renno, N.O., Burkett, M.L., and Larkin, M.P., A simple thermodynamical theory for dust devils, J. Atmos. Sci., 1998, vol. 55, pp. 3244–3252. doi 10.1175/1520-469CrossRefGoogle Scholar
- 26.Renno, N.O., Nash, A.A., Lunine, J., and Murphy, J., Martian and terrestrial dust devils: Test of a scaling theory using pathfinder data, J. Geophys. Res., 2000, vol. 105, pp. 1859–1865.CrossRefGoogle Scholar
- 27.Renno, N.O., Abreu, V.J., Koch, J., Smith, P.H., Hartogensis, O.K., Henk, A.R.De., Bruin, H.A.R., Burose, D., Delory, G.T., Farrell, W.M., Watts, C.J., Garatuza, J., Parker, M., and Carswell, A., MATADOR 2002: A pilot field experiment on convective plumes and dust devils, J. Geophys. Res., 2004, vol. 109, E07001. doi 10.1029/2003JE002219CrossRefGoogle Scholar
- 28.Sinclair, P.C., Some preliminary dust devil measurements, Mon. Weather Rev., 1964, vol. 22, no. 8, pp. 363–367.CrossRefGoogle Scholar
- 29.Sinclair, P.C., General characteristics of dust devils, J. Appl. Meteorol., 1969, vol. 8, pp. 32–45.CrossRefGoogle Scholar
- 30.Sinclair, P.C., The lower structure of dust devils, J. Atmos. Sci., 1973, vol. 30, pp. 1599–1619. doi 10.1175/1520-469CrossRefGoogle Scholar
- 31.Tegen, I., Lacis, A.A., and Fung, I., The influence on climate forcing of mineral aerosols from disturbed soils, Nature, 1996, vol. 380, pp. 419–422.CrossRefGoogle Scholar
- 32.Yuan, L. and Fritts, D.C., Influence of a mean shear on the dynamical instability of an inertio–gravity wave, J. Atmos. Sci., 2004, vol. 46, pp. 2562–2568.CrossRefGoogle Scholar
- 33.Zhao, Y.Z., Gu, Z.L., Yu, Y.Z., Ge, Y., Li, Y., and Feng, X., Mechanism and large eddy simulation of dust devils, Atmos.-Ocean, 2004, vol. 42, no. 1, pp. 61–84. doi 10.3137/ao.420105CrossRefGoogle Scholar