Izvestiya, Atmospheric and Oceanic Physics

, Volume 54, Issue 10, pp 1430–1448 | Cite as

Experimental Studies of Aerosols in the Atmosphere of Semiarid Landscapes of Kalmykia: 2. Landscape–Geochemical Composition of Aerosol Particles

  • D. P. GubanovaEmail author
  • T. M. KuderinaEmail author
  • O. G. ChkhetianiEmail author
  • M. A. IordanskiiEmail author
  • Yu. I. ObvintsevEmail author
  • M. S. ArtamonovaEmail author


The chemical composition of aerosol particles in the atmospheric surface layer of semiarid regions of Kalmykia is considered. Background landscapes of dry steppes, sandy massifs, and salt marshes have been studied using a landscape–geochemical approach. The results of long-term complex experimental studies (2002–2016) of the elemental composition of surface aerosols, the morphology and chemical composition of soils, and the elemental composition of aerosol particles in the atmospheric surface layer have been summarized. Soils have been confirmed to be the main sources of aerosol emission in semiarid regions. The accumulation of chemical elements in soils and aerosol particles has been estimated. The concentration clarks, aerosol-concentration coefficients, and local aerosol concentration have been calculated. The content of sulfur and some heavy metals in aerosols, which enter into the atmosphere by both removal from the underlying surface and from local anthropogenic sources, has been found to be high.


background landscapes soils sands dry steppe salt marshes aerosol particles chemical composition concentration clarks aerosol-concentration coefficients 



We are grateful to A.A. Khapaev, V.A. Lebedev, L.O. Maksimenkov, A.V. Kudikov, I.S. Filippov, V.K. Bandin, S.A. Kosyan, and B.A. Khartskhaev (Komsomol’skii) for assistance in arranging, supporting, and carrying out field studies of the geochemical composition of surface aerosol in the Republic of Kalmykia.

We are also grateful to researchers at the Laboratory of Soil Mineralogy and Micromorphology of the Dokuchaev Soil Science Institute for analytical studies of soils in Kalmykia.

This study was supported by the Russian Foundation for Basic Research and RGO, project no. 17-05-41121 as well as the Presidium of the Russian Academy of Sciences, fundamental research program nos. 28 and 51.


  1. 1.
    Aderikhin, P.G. and Egorenkov, L.I., K mineralogicheskomu sostavu pochv Kalmytskoi ASSR, in Pochvovedenie i problemy sel’skogo khozyaistva. Mineralogicheskii sostav i svoistva pochv (Soil Science and Problems of Agriculture. Mineral Composition and Soil Features), Voronezh: Voronezh. univ., 1973, pp. 108–128.Google Scholar
  2. 2.
    Agroklimaticheskie resursy Kalmytskoi ASSR (Agroclimatic Resources of the Kalmykian ASSR), Leningrad: Gidrometeoizdat, 1974.Google Scholar
  3. 3.
    Andronova, A.V., Minashkin, V.M., Iordanskii, M.A., Nevskii, I.A., Yablokov, M.Yu., Obvintsev, Yu.I., Zudin, B.V., Ivanov, Yu.N., Lebedev, V.A., and Chizhikova, N.P., Salt transport from newly dried areas: Experimental studies, in Mezhdunarodnaya konferentsiya “Estestvennye i antropogennye aerozoli”, g. Sankt-Peterburg, 29 sentyabrya–4 oktyabrya 1998 g.: Sbornik trudov (Proceedings of the International Conference “Natural and Anthropogenic Aerosols”, St. Petersburg, September 29–October 4, 1998), Ivlev, L.S., Ed., St. Petersburg: NII khimii, 1998, pp. 414–446.Google Scholar
  4. 4.
    Andronova, A.V., Granberg, I.G., Gubanova, D.P., Zudin, B.V., Iordanskii, M.A., Minashkin, V.M., Nevskii, I.A., Obvintsev, Yu.I., Osipov, V.P., and Cherlina, I.E., Ozone accommodation on aerosol particles: Estimation of the accommodation coefficient from the TROICA-5 experimental data, Izv., Atmos. Ocean. Phys., 2002, vol. 38, no. Suppl. 1, pp. S132–S137.Google Scholar
  5. 5.
    Artamonova, M.S., Gubanova, D.P., Iordanskii, M.A., Lebedev, V.A., Maksimenkov, L.O., Minashkin, V.M., Obvintsev, Yu.I., and Chkhetiani, O.G., Variations in the mass concentration and composition of surface aerosol in the steppe zone of Russian south in summer, Geofiz. Protsessy Biosfera, 2016, vol. 15, no. 1, pp. 5–24.Google Scholar
  6. 6.
    Chkhetiani, O.G., Gledzer, E.B., Artamonova, M.S., and Iordanskii, M.A., Dust resuspension under weak wind conditions: Direct observations and model, Atmos. Chem. Phys., 2012, vol. 12, no. 11, pp. 5147–5162.CrossRefGoogle Scholar
  7. 7.
    Dobrovol’skii, V.V., Izbrannye trudy (Selected Works), vol. 3: Biogeokhimiya mirovoi sushi (Biogeochemistry of World Land), Moscow: Nauch. mir, 2009.Google Scholar
  8. 8.
    Ehrhardt, H., Roentgenfluoreszenzanalyse, Leipzig: VEB Deutscher Verlag fuer Grundstoffindustrie, 1981; Moscow: Metallurgiya, 1985.Google Scholar
  9. 9.
    Gavrilov, A.M. and Vakulin, A.A., Chemical and mineralogical composition of sandy soils in the Northern Caspian, in Tez. dokl. Mezhdunar. konf. pochvovedov (Abstracts of the International Conference of Soil Sciences), Astrakhan, 1994, pp. 158–160.Google Scholar
  10. 10.
    Ginzburg, A.S., Gubanova, D.P., and Minashkin, V.M., Influence of natural and anthropogenic aerosols on global and regional climate, Russ. J. Gen. Chem., 2008, vol. 79, no. 9, pp. 2062–2070.CrossRefGoogle Scholar
  11. 11.
    Glazovskaya, M.A., Geokhimicheskie osobennosti tipologii i metodiki issledovaniya prirodnykh landshaftov (Geochemical Features of the Typology and Methodology of Natural Landscapes Research), Smolensk: Oikumena, 2002.Google Scholar
  12. 12.
    Gledzer, E.B., Granberg, I.G., and Chkhetiani, O.G., Convective aerosol fluxes near the ground surface, Dokl. Earth Sci., 2009, vol. 426, no. 1, pp. 652–657.CrossRefGoogle Scholar
  13. 13.
    Gledzer, E.B., Granberg, I.G., and Chkhetiani, O.G., Air dynamics near the soil surface and convective emission of aerosol, Izv., Atmos. Ocean. Phys., 2010, vol. 46, no. 1, pp. 29–40.CrossRefGoogle Scholar
  14. 14.
    Gorchakova, I.A., Mokhov, I.I., and Rublev, A.N., Radiation and temperature effects of the intensive injection of dust aerosol into the atmosphere, Izv., Atmos. Ocean. Phys., 2015, vol. 51, no. 2, pp. 113–126.CrossRefGoogle Scholar
  15. 15.
    Granberg, I.G., Physical mechanisms and ecological problems of the pollution of the atmospheric boundary layer over inhomogeneous surfaces, Doctoral (Phys.–Math.) Dissertation, Moscow, 2009.Google Scholar
  16. 16.
    Gubanova, D.P., Chkhetiani, O.G., Kuderina, T.M., Iordanskii, M.A., Obvintsev, Yu.I., and Artamonova, M.S., Experimental studies of aerosols in the atmosphere of semiarid landscapes of Kalmykia. 1. Microphysical parameters and mass concentration of aerosol particle, Izv., Atmos. Ocean. Phys., 2018, vol. 54, no. 8.Google Scholar
  17. 17.
    Ivanov, V.V., Ekologicheskaya geokhimiya elementov: Spravochnik v 6 knigakh (Ecological Geochemistry of Elements: A Handbook in 6 Volumes), vol. 2: Glavnye p-elementy (Main p-Elements), Moscow: Nedra, 1994.Google Scholar
  18. 18.
    Ivlev, L.S., Khimicheskii sostav i struktura atmosfernykh aerozolei (Chemical Composition and Structure of Atmospheric Aerosols), Leningrad: LGU, 1982.Google Scholar
  19. 19.
    Karandashev, V.K., Turanov, A.N., Orlova, T.A., Lezhnev, A.E., Nosenko, S.V., Zolotareva, N.I., and Moskvina, I.R., The use of inductively coupled plasma mass spectrometry in elemental analysis of environmental objects, Zavod. Lab. Diag. Mater., 2007, vol. 73, no. 1, pp. 12–22.Google Scholar
  20. 20.
    Kasimov, N.S. and Vlasov, D.V., Clarks of chemical elements as a comparison standard in ecogeochemistry, Vestn. Mosk. Univ., Ser. 5: Geogr., 2015, no. 2, pp. 7–17.Google Scholar
  21. 21.
    Khabarov, A.T., Hypergenesis of minerals in light sands of Black Lands of Kalmykia, Pochvovedenie, 1976, no. 9, pp. 98–111.Google Scholar
  22. 22.
    Klassifikatsiya i diagnostika pochv Rossii (Classification and Diagnostics of Soils in Russia), Smolensk: Oikumena, 2004.Google Scholar
  23. 23.
    Kondrat’ev, K.Ya., Ivlev, L.S., and Krapivin, V.F., Atmosfernye aerozoli: Svoistva, protsessy obrazovaniya i vozdeistviya. Ot nano- do global’nykh masshtabov (Atmospheric Aerosol: Properties, Formation, and Impacts. Nano- to-Global Scale Processes), St. Petersburg: VVM, 2007.Google Scholar
  24. 24.
    Kuderina, T.M., Geochemical landscapes of Kalmykia, Geol., Geogr. Glob. Energ., 2006, no. 1, pp. 204–218.Google Scholar
  25. 25.
    Kuderina, T.M., Atmospheric aerosol as an indicator of desertification in arid and subarid landscapes of the European territory of Russia, in Stepi Severnoi Evrazii: Materialy VII Mezhdunar. simpoziuma (The Steppes of North Eurasia: Proceedings of the VII International Symposium), Chibilev, A.A., Ed., Orenburg: IS UrO RAN, Dimur, 2015, pp. 442–443.Google Scholar
  26. 26.
    Kudryashov, V.I., Analysis of the elemental composition atmospheric aerosols by physical methods, in Problemy fiziki atmosfery: Mezhvuzovskii sbornik (Problems of Atmospheric Physics: Interuniversity Transactions), vol. 20: Fizika i khimiya atmosfernykh aerozolei (Physics and Chemistry of Atmospheric Aerosols), St. Petersburg, SPbGU, 1997, pp. 97–130.Google Scholar
  27. 27.
    Lohmann, U. and Feichter, J., Global indirect aerosol effects: A review, Atmos. Chem. Phys., 2005, vol. 5, no. 3, pp. 715–737.CrossRefGoogle Scholar
  28. 28.
    Perel’man, A.I., Atomy-sputniki (Satellite Atoms), Moscow: Lenand, 2017.Google Scholar
  29. 29.
    Perel’man, A.I. and Kasimov, N.S., Geokhimiya landshafta (Landscape Geochemistry), Moscow: Astreya-2000, 1999.Google Scholar
  30. 30.
    Sangadzhieva, L.Kh., Mikroelementy v landshaftakh Kalmykii i biogeokhimicheskoe raionirovanie ee territorii (Microelements in the Landscapes of Kalmykia and Biogeochemical Zoning of Its Territory), Elista: APP Dzhangr, 2004.Google Scholar
  31. 31.
    Sangadzhieva, L.Kh., Landscape–biogeochemical zoning of the territory of Kalmykia, Izv. Vyssh. Uchebn. Zaved., Sev.-Kavk. Reg., Estestv. Nauki, 2006, no. 1, pp. 89–97.Google Scholar
  32. 32.
    Sangadzhieva, L.Kh., Davaeva, Ts.D., Kikil’deev, L.E., Tsombueva, B.V., Samtanova, D.E., and Sangadzhieva, O.S., Biogeochemical migration of microelements in arid ecosystems of Kalmykia, Vestn. Tomsk. Gos. Univ., 2013, vol. 18, no. 3, pp. 1007–1011.Google Scholar
  33. 33.
    Seinfeld, J.H. and Pandis, S.N., Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, New York: Wiley, 2006.Google Scholar
  34. 34.
    Tashninova, L.N. and Tashninova, A.A., Soils of Kalmykian arid zones, Vestn. Yuzhn. Nauchn. Tsentra Ross. Akad. Nauk, 2010, vol. 6, no. 1, pp. 52–61.Google Scholar
  35. 35.
    Tseren-Ubushieva, D.V. and Sangadzhieva, L.Kh., Assessment of the ecological state of the soil–land resources of the Republic of Kalmykia, in Nauka i molodezh': Materialy X Mezhdunar. nauch.-prakt. konf. molodykh issledovatelei (Science and Youth: Proceedings of the X International Scientific and Practical Conference of Young Researchers), Volgograd: GAU IPK Niva, 2016, vol. 1, pp. 139–142.Google Scholar
  36. 36.
    Tsombueva, B.V., Impact of oil industry on the land pollution in southeastern part of the Republic of Kalmykia, Cand. Sci. (Chem.) Dissertation, Elista, 2016.Google Scholar
  37. 37.
    Vinogradov, A.P., The average content of chemical elements in major types of erupted rocks of the Earth crust, Geokhimiya, 1962, no. 7, pp. 555–571.Google Scholar
  38. 38.
    Vinogradov, B.V., Sorokin, A.D., and Fedotov, P.B., Mapping of climatic aridity of the territory of Kalmykia, in Biota i prirodnaya sreda Kalmykii (The Biota and Natural Environment of Kalmykia), Zonn, S.V. and Neronov, V.M., Eds., Moscow: Korkis, 1995, pp. 253–258.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Karpov Research Institute of Physical Chemistry, State Scientific Center of the Russian Federation, State Corporation RosatomMoscowRussia
  2. 2.Obukhov Institute of Atmospheric Physics, Russian Academy of SciencesMoscowRussia
  3. 3.Institute of Geography, Russian Academy of SciencesMoscowRussia

Personalised recommendations