Izvestiya, Atmospheric and Oceanic Physics

, Volume 54, Issue 10, pp 1449–1459 | Cite as

Extreme Climatic Events in the Altai-Sayan Region as an Indicator of Powerful Volcanic Eruptions

  • V. V. BarinovEmail author
  • V. S. MyglanEmail author
  • A. V. TaynikEmail author
  • O. Ch. OidupaaEmail author
  • A. R. AgatovaEmail author
  • O. V. Churakova (Sidorova)Email author


Analytic data on anomalies of the tree-ring structure of Siberian larch on the transect, passing through the Russian part of the Altai-Sayan Mountain Region from the west to the east along the top forest limit, are given for the first time. Four extreme events (1783–1785, 1788–1789, 1812–1814, and 1884) have been determined by a microscopic analysis of the anatomic structure of tree rings (identification of frost, light-colored, and missing rings and fluctuations in wood density). These were periods of strong cooling in almost the entire area of the Altai-Sayan Mountain Region. The data correspond to archived historical materials. A comparison of dates of extreme cold periods with data on volcanic eruptions, the emissions of which reached the stratosphere (the Volcanic Explosivity Index VEI ≥ 4), has shown that they coincide with periods of the awakening of volcanoes such as Laki (1783, VEI = 4), Asama (1783, VEI = 4), Etna (1787, VEI = 4), Soufriere (1812, VEI = 4), Awu (1812, VEI = 4), Suvanosedzima (1813, VEI = 4), and Krakatau (1883, VEI = 6). Nevertheless, the trees in the studied area did not respond to the large eruptions of the Tambora (1815, VEI = 7), Novarupta (1912, VEI = 6), and Pinatubo (1991, VEI = 6) volcanoes. This difference in the reaction of forest vegetation to strong volcanic eruptions of the 19th–20th centuries may be explained by changes in the direction and speed of atmospheric streams, the mosaic pattern of stratospheric aerosols in the north of Central Asia after the eruptions of some volcanoes, and the warmer climate in the 20th century (which reduced the sensitivity of trees at the top forest line in the Altai-Sayan Mountain Region to volcanic eruptions due to the upward shift of the temperature limit of forest development).


dendrochronology volcanic eruptions climatic extremes temperature anomalies frost rings light rings changes in annual ring density missing rings the Altai-Sayan Mountain Region 



Dendrochronologic and climatic researches were supported by the Russian Scientific Foundation, project no. 15-14-30011. The assessment of the correlation with volcanic eruptions was supported by the Russian Foundation for Basic Research, projects nos. 16-55-76012 ERA_a and 16-05-01035), state tasks nos. 5.6818.2017/6.7 and 5.3508.2017/PCh, and the ERANet RUS plus project no. SNF IZRPZ0_164735.


  1. 1.
    Anchukaitis, K.J., Breitenmoser, P., Briffa, K.R., Buchwal, A., Buntgen, U., Cook, E.R., D’Arrigo, R.D., Esper, J., Evans, M.N., Frank, D., Grudd, H., Gunnarson, B.E., Hughes, M.K., Kirdyanov, A.V., Körner, C., Krusic, P.J., Luckman, B., Melvin, T.M., Salzer, M.W., Shashkin, A.V., Timmreck, C., Vaganov, E.A., and Wilson, R.J.S., Tree rings and volcanic cooling, Nature Geosci., 2012, vol. 5, pp. 836–837.CrossRefGoogle Scholar
  2. 2.
    Bronnimann, S. and Kramer, D., Tambora and the “Year Without a Summer” of 1816: A perspective on Earth and Human, 2016.Google Scholar
  3. 3.
    Büntgen, U., Myglan, V.S., Ljungqvist, F.C., McCormick, M., Di Cosmo, N., Sigl, M., Jungclaus, J., Wagner, S., Krusic, P.J., Esper, J., Kaplan, J.O., de Vaan M.A.C., Luterbacher, J., Wacker, L., Tegel, W., and Kirdyanov, A.V., Cooling and societal change during the Late Antique Little Ice Age from 536 to around 660 AD, Nature Geosci., 2016, vol. 9, pp. 231–236.CrossRefGoogle Scholar
  4. 4.
    Churakova (Sidorova), O.V., Bryukhanova, M.V., Saurer, M., Boettgerd, T., Naurzbaev, M.M., Myglan, V.S., Vaganov, E.A., Hughes, M.K., and Siegwolf, R.T.W., A cluster of stratospheric volcanic eruptions in the AD 530s recorded in Siberian tree rings, Global Planet. Change, 2014, vol. 122, pp. 140–150.Google Scholar
  5. 5.
    Cole-Dai, J., Mosley-Thompson, E., and Thompson, L., Ice core evidence for an explosive tropical eruption 6 years preceding Tambora, J. Geophys. Res., 1991, vol. 96, no. D9, pp. 17361–17366.CrossRefGoogle Scholar
  6. 6.
    Cook, E.R. and Krusic, P.J., A Tree-ring standardization program based on detrending and autoregressive time series modeling, with interactive graphics (ARSTAN), 2008. publicSoftware.html.Google Scholar
  7. 7.
    Cook, E.R., Anchukaitis, K.J., Buckley, B.M., D’Arrigo, R.D., Jacoby, G.C., and Wright, W.E., Asian monsoon failure and megadrought during the last millennium, Science, 2010, vol. 328, no. 5977, pp. 486–489.CrossRefGoogle Scholar
  8. 8.
    D’Arrigo, R., Frank, D., Jacoby, G., and Pederson, N., Spatial response to major volcanic events in or about AD 536, 934 and 1258: Frost rings and other dendrochronological evidence from Mongolia and Northern Siberia, Clim. Change, 1999, no. 42, pp. 31–34.Google Scholar
  9. 9.
    D’Arrigo, R., Jacoby, G., Frank, D., Pederson, N., Cook, E., Buckley, B., Nachin, B., Mijiddorj, R., and Dugarjav, C., 1738 years of Mongolian temperature variability inferred from a tree-ring width chronology of Siberian pine, Geophys. Res. Lett., 2001, vol. 28, pp. 543–546.CrossRefGoogle Scholar
  10. 10.
    D’Arrigo, R., Wilson, R., and Anchukaitis, K.J., Volcanic cooling signal in tree ring temperature records for the past millennium, J. Geophys. Res.: Atmos., 2013, vol. 118, no. 16, pp. 9000–9010.Google Scholar
  11. 11.
    Douglass, A.E., Climatic Cycles and Tree-Growth: A Study of the Annual Rings of Trees in Relation to Climate and Solar Activity, Washington, D.C.: Carnegie Inst, 1919, vol. 1.CrossRefGoogle Scholar
  12. 12.
    Filion, L., Payette, S., Gauthier, L., and Boutin, Y., Light rings in subarctic conifers as a dendrochronological tool, Quat. Res., 1986, vol. 26, no. 2, pp. 272–279.CrossRefGoogle Scholar
  13. 13.
    Fischer, E.M., Luterbacher, J., Zorita, E., Tett, S.F.B., Casty, C., and Wanner, H., European climate response to tropical volcanic eruptions over the last half millennium, Geophys. Res. Lett., 2007, vol. 34, no. 5, L05707.CrossRefGoogle Scholar
  14. 14.
    Fritts, H.C., Tree-Rings and Climate, New York: Academic, 1976.Google Scholar
  15. 15.
    Guillet, S., Corona, C., Stoffel, M., Khodri, M., Lavigne, F., Ortega, P., Eckert, N., Selenniou, P., Daux, V., Churakova (Sidorova), O.V., Davi, N., Edouard, J.-L., Zhang, Y., Luckman, B.H., Myglan, V.S., Guiot, J., Beniston, M., Masson-Delmotte, V., and Oppenheimer, C., Climate response to the Samalas volcanic eruption in 1257 revealed by proxy records, Nature Geosci., 2017, vol. 10, pp. 123–128.CrossRefGoogle Scholar
  16. 16.
    Gurskaya, M.A., Temperature conditions of the formation of frost damages in conifer trees in the high latitudes of Western Siberia, Biol. Bull., 2014. vol. 41, no. 2, pp. 187–196.CrossRefGoogle Scholar
  17. 17.
    Gurskaya, M.A. and Shiyatov, S.G., Distribution of frost injuries in the wood of conifers, Russ. J. Ecol., 2006, vol. 37, no. 1, pp. 7–12.CrossRefGoogle Scholar
  18. 18.
    Holmes, R.L., Computer-assisted quality control in tree-ring dating and measurement, Tree-Ring Bull., 1983, vol. 43, pp. 69–78.Google Scholar
  19. 19.
    Hughes, M., K., Vaganov, E.A., Shiyatov, S.G., Touchan, R., and Funkhouser, G., Twentieth-century summer warmth in northern Yakutia in a 600-year context, Holocene, 1999, vol. 9, no. 5, pp. 603–608.CrossRefGoogle Scholar
  20. 20.
    Izmenenie klimata i bioraznoobrazie Rossiiskoi chasti Altae-Sayanskogo ekoregiona (Climate Changes and Biodiversity in the Russian Part of the Altai–Sayan Ecological Region), Krasnoyarsk: Inst. lesa im. V.N. Sukacheva SO RAN, 2013.Google Scholar
  21. 21.
    Jacoby, G.C., Workman, K.W., and Darrigo, R.D., Laki eruption of 1783, tree rings, and disaster for northwest Alaska Inuit, Quat. Sci. Rev., 1999, vol. 18, no. 2, pp. 1365–1371.CrossRefGoogle Scholar
  22. 22.
    Jones, P.D., Briffa, K.R., and Schweingruber, F.H., Tree-ring evidence of the widespread effects of explosive volcanic eruptions, Geophys. Res. Lett., 1995, vol. 22, no. 11, pp. 1333–1336.CrossRefGoogle Scholar
  23. 23.
    Khantemirov, R.M., Dynamics tree vegetation and climate changes in northern West Siberia in the Holocene, Extended Abstract of Doctor of Sci. (Biol.) Dissertation, Ekaterinburg, 2009.Google Scholar
  24. 24.
    Khantemirov, R.M., Gorlanova, L.A., Surkov, A.Yu., and Shiyatov, S.G., Extreme climate events on Yamal for the last 4100 years according to dendrochronological data, Izv. Ross. Akad. Nauk, Ser. Geogr., 2011, no. 2, pp. 89–102.Google Scholar
  25. 25.
    Man, W., Zhou, T., and Jungclaus, J.H., Effects of large volcanic eruptions on global summer climate and east Asian monsoon changes during the last millennium: Analysis of MPI-ESM simulations, J. Clim., 2014, vol. 27, no. 19, pp. 7394–7409.CrossRefGoogle Scholar
  26. 26.
    Marusek, J.A., A chronological listing of early weather events. 2011/09/weather1.pdf. Accessed December 30, 2016.Google Scholar
  27. 27.
    Myglan, V.S., Klimat i sotsium Sibiri v malyi lednikovyi period (Climate and Social Medium in Siberia in the Low Ice Age), Krasnoyarsk: Sib. fed. univ., 2010.Google Scholar
  28. 28.
    Naurzbaev, M.M., Vaganov, E.A., and Sidorova, O.V., Variability of the air temperature in the north of Eurasia inferred from millennial tree-ring chronologies, Kriosfera Zemli, 2003, vol. 7, no. 2, pp. 84–91.Google Scholar
  29. 29.
    Naurzbaev, M.M., Vaganov, E.A., Sidorova O.V., and Sclnveingruber F.H., Summer temperatures in eastern Taimyr inferred from a 2427-year late-Holocene tree-ring chronology and earlier floating series, Holocene, 2002, vol. 12, no. 6, pp. 727–736.CrossRefGoogle Scholar
  30. 30.
    Olivier, S., Blaser, C., Brutsch, S., Frolova, N., Gaggeler, H., Henderson, K.A., Palmer, A.S., Papina, T., and Schwikowski, M., Temporal variations of mineral dust, biogenic tracers, and anthropogenic species during the past two centuries from Belukha ice core, Siberian Altai, J. Geophys. Res., 2006, vol. 111, no. D5, D05309.CrossRefGoogle Scholar
  31. 31.
    Rampino, M.R. and Self, S., The atmospheric effects of El Chichon, Sci. Am., 1984, no. 250, pp. 48–57.Google Scholar
  32. 32.
    Ridley, D.A., Solomon, S., Barnes, J.E., Burlakov, V.D., Deshler, T., Dolgii, S.I., Herber, A.B., Nagai, T., Neely, R.R., Nevzorov, A.V., Ritter, C., Sakai, T., Santer, B.D., Sato, M., Schmidt, A., Uchino, O., and Vernier, J.P., Total volcanic stratospheric aerosol optical depths and implications for global climate change, Geophys. Res. Lett., 2014, vol. 42, no. 22, pp. 7763–7769.CrossRefGoogle Scholar
  33. 33.
    Rinn, F., TSAP V 3.6 Reference Manual: Computer Program for Tree-Rings Analysis and Presentation, Heidelberg: Frank Rinn Distribution, 1996.Google Scholar
  34. 34.
    Robock, A., Volcanic eruptions and climate, Rev. Geophys., 2000, vol. 38, no. 2, pp. 191–219.CrossRefGoogle Scholar
  35. 35.
    Salzer, M.W. and Hughes, M.K., Volcanic eruptions over the last 5000 years from high elevation tree-ring widths and frost rings, in Tree Rings and Natural Hazards: A State-of-Art, Stoffel, M., Bollshweiler, M., Butler, D.R., and Luckman, B.H., Eds., Berlin: Springer, 2010, pp. 469–483.Google Scholar
  36. 36.
    Schweingruber, F.H., Wood Structure and Environment, Berlin: Springer, 2007.Google Scholar
  37. 37.
    Self, S., Zhao, J.X., Holasek, R.E., Torres, R.C., and King, A.J., The atmospheric impact of the 1991 Mount Pinatubo eruption, 1996, in Fire and Mud: Eruptions and Lahars of Mount Pinatubo, Philippines, Newhall, C.G. and Punongbayan, R., Eds., Quezon City: Philippine Institute of Volcanology and Seismology, 1996, pp. 1089–1115.Google Scholar
  38. 38.
    Sidorova, O.V. and Naurzbaev, M.M., Response of Larix cajanderi to climatic changes at the upper timberline and in the Indigirka River valley, Lesovedenie, 2002, no. 2, pp. 73–75.Google Scholar
  39. 39.
    Sidorova, O.V., Naurzbaev, M.M., and Vaganov, E.A., Response of tree-ring chronology in Northern Eurasia to powerful volcanic eruptions, in Problemy ekologicheskogo monitoringa i modelirovaniya ekosistem (Problems of Ecological Monitoring and Modeling of Ecosystems), 2005, vol. 20, pp. 60–72.Google Scholar
  40. 40.
    Sidorova, O.V., Saurer, M., Myglan, V.S., Eichler, A., Schwikowski, M., Kirdyanov, A.V., Bryukhanova, M.V., Gerasimova, O.V., Kalugin, I.A., Daryin, A.V., and Siegwolf, R.T.W., A multi-proxy approach for revealing recent climatic changes in the Russian Altai, Clim. Dyn., 2012, vol. 38, nos. 1–2, pp. 175–188.CrossRefGoogle Scholar
  41. 41.
    Sigl, M., Winstrup, M., McConnell, J.R., Welten, K.C., Plunkett, G., Ludlow, F., Buntgen, U., Caffee, M., Chellman, N., Dahl-Jensen, D., Fischer, H., Kipfstuhl, S., Kostick, C., Maselli, O.J., Mekhaldi, F., Mulvaney, R., Muscheler, R., Pasteris, D.R., Pilcher, J.R., Salzer, M., Schüpbach, S., Steffensen, J.P., Vinther, B.M., and Woodruff, T.E., Timing and climate forcing of volcanic eruptions for the past 2500 years, Nature, 2015, vol. 523, pp. 543–549.CrossRefGoogle Scholar
  42. 42.
    Stoffel, M., Khodri, M., Corona, C., Guillet, S., Poulain, V., Bekki, S., Guiot, J., Luckman, B.H., Oppenheimer, C., Lebas, N., Beniston, M., and Masson-Delmotte, V., Estimates of volcanic-induced cooling in the Northern Hemisphere over the past 1500 years, Nature Geosci., 2015, vol. 8, pp. 784–788.CrossRefGoogle Scholar
  43. 43.
    Taynik, A.V., Myglan, V.S., Barinov, V.V., Oidupaa, O.Ch., and Nazarov, A.N., The growth of Siberian larch (Larix sibirica Ldb.) at the upper forest boundary in the Republic of Tyva, Geogr. Prir. Resur., 2015a, no. 2, pp. 91–99.Google Scholar
  44. 44.
    Taynik, A.V., Myglan, V.S., Barinov, V.V., Nazarov, A.N., Agatova, A.R., and Nepop, R.K., The growth of Siberian larch (Larix sibirica Ldb.) at the upper forest boundary in the Altai Republic, Izv. Ross. Akad. Nauk, Ser. Geogr., 2015b, no. 6, pp. 75–85.Google Scholar
  45. 45.
    Taynik, A.V., Barinov, V.V., Oidupaa, O.C., Myglan, V.S., Reinig, F., and Büntgen, U., Growth coherency and climate sensitivity of Larix sibirica at the upper treeline in the Russian Altai–Sayan Mountains, Dendrochronologia, 2016, vol. 39, pp. 10–16.CrossRefGoogle Scholar
  46. 46.
    Tardif, J.C., Girardin, M.P., and Conciatori, F., Light rings as bioindicators of climate change in interior North America, Global Planet. Change, 2011, nos. 1–2, pp. 134–144.Google Scholar
  47. 47.
    The economic state of Tobol’sk newcomers, Sib. Zhizn’, 1899, no. 247, p. 3.Google Scholar
  48. 48.
    Thordarson, T. and Self, S., Atmospheric and environmental effects of the 1783–1784 Laki eruption: A review and reassessment, J. Geophys. Res., 2003, vol. 108, no. D1, 4011.CrossRefGoogle Scholar
  49. 49.
    Tishin, D.V., Dendroekologiya (metodika drevesno-kol’tsevogo analiza): Ucheb.-metod. posobie (Dendrochronology (A Tree-Ring Analysis Technique): An Teaching Guide), Kazan: Kazan. fed. univ., 2015.Google Scholar
  50. 50.
    Vaganov, E.A. and Shashkin, A.V., Rost i struktura godichnykh kolets khvoinykh (The Growth and Structure of Annual Rings of Conifers), Novosibirsk: Nauka, 2000.Google Scholar
  51. 51.
    Vaganov, E.A., Kruglov, V.B., and Vasil’ev, V.G., Dendrokhronologiya (Dendrochronology), Krasnoyarsk: SFU, 2008.Google Scholar
  52. 52.
    Yalcin, K., Wake, C.P., Kreutz, K.J., Germani, M.S., and Whitlow, S.I., Ice core evidence for a second volcanic eruption around 1809 in the northern hemisphere, Geophys. Res. Lett., 2006, vol. 33, no. 14, L14706.CrossRefGoogle Scholar
  53. 53.
    Worldwide Holocene volcano and eruption information: Smithsonian Institution, Global Volcanism Program, 2013. cfm. Accessed October 26, 2016.Google Scholar
  54. 54.
    Zielinski, G.A., Use of paleo-records in determining variability within the volcanism-climate system, Quarter. Sci. Rev., 2000, nos. 1–5, pp. 417–438.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Siberian Federal UniversityKrasnoyarskRussia
  2. 2.Tuva State UniversityKyzylRussia
  3. 3.Sobolev Institute of Geology and Mineralogy, Siberian Branch, Russian Academy of SciencesNovosibirskRussia
  4. 4.Ural Federal UniversityYekaterinburgRussia
  5. 5.Institute of Environmental Sciences, University of GenevaGenevaSwitzerland

Personalised recommendations