Advertisement

Izvestiya, Atmospheric and Oceanic Physics

, Volume 54, Issue 9, pp 1312–1319 | Cite as

Web-Oriented Software System for Analysis of Spatial Geophysical Data Using Geoinformatics Methods

  • A. A. Soloviev
  • R. I. Krasnoperov
  • B. P. NikolovEmail author
  • J. I. Zharkikh
  • S. M. Agayan
METHODS AND MEANS OF SATELLITE DATA PROCESSING AND INTERPRETATION

Abstract

This work is devoted to the description of a software system that was developed using modern network and geoinformation technologies for analysis of geospatial data. The system includes a client web application, which provides access to mapping services and geoprocessing services published on the GIS server. The approach, which forms the basis of the presented system, allows researchers to access an extensive geodatabase for remote sensing and Earth sciences, as well as a set of tools for their comprehensive analysis.

Keywords:

system analysis integrated systems geospatial database GIS server mapping services geoprocessing services 

Notes

ACKNOWLEDGMENTS

This work was performed as part of the Program of Fundamental Research of the Presidium of the Russian Academy of Sciences no. 48 “Deposits of Strategic and High-tech Metals in the Russian Federation: Location Patterns, Formation Conditions, and Innovative Technologies of Targeting and Development”.

REFERENCES

  1. 1.
    Agayan, S.M. and Solov’yev, A.A., Isolation of dense regions in metric spaces based oncrystallization, Syst. Res. Inf. Technol., 2004, no. 2, pp. 7–23.Google Scholar
  2. 2.
    Agayan, S.M., Bogoutdinov, Sh.R., and Dobrovolsky, M.N., Discrete perfect sets and their application in cluster analysis, Cybern. Syst. Anal., 2014, vol. 50, no. 2, pp. 176–190. doi 10.1007/s10559-014-9605-9CrossRefGoogle Scholar
  3. 3.
    Agayan, S.M., Bogoutdinov, Sh.R., Soloviev, A., and Sidorov, R., The study of time series using the DMA methods and geophysical applications, Data Sci. J., 2016, vol. 15, no. 16, pp. 1–21. doi 10.5334/dsj-2016-016CrossRefGoogle Scholar
  4. 4.
    Barthelmes, F. and Köhler, W., International Centre for Global Earth Models (ICGEM), J. Geod., 2016, vol. 90, no. 10, pp. 907–1205. doi 10.1007/s00190-016-0948-zCrossRefGoogle Scholar
  5. 5.
    Beriozko, A., Lebedev, A., Soloviev, A., Krasnoperov, R., and Rybkina, A., Geoinformation system with algorithmic shell as a new tool for earth sciences, Russ. J. Earth. Sci., 2011, vol. 12, ES1001. doi 10.2205/2011ES000501CrossRefGoogle Scholar
  6. 6.
    Bondur, V.G., Modern approaches to processing large hyperspectral and multispectral aerospace data flows, Izv., Atmos. Ocean. Phys., 2014, vol. 50, no. 9, pp. 840–852.CrossRefGoogle Scholar
  7. 7.
    Bondur, V.G. and Zverev, A.T., A method of earthquake forecast based on the lineament analysis of satellite images, Dokl. Earth Sci., 2005, vol. 402, no. 4, pp. 561–567.Google Scholar
  8. 8.
    Bondur, V.G., Zverev, A.T., and Gaponova, Ye.V., Lineament analysis of space images of seismically dangerous territories of Russia, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2012, vol. 9, no. 4, pp. 213–222.Google Scholar
  9. 9.
    CbTree, CheckBox Tree. https://github.com/pjekel/cbtree.Google Scholar
  10. 10.
    Earth Online, ESA Earth Observation Data. https://earth. esa.int/.Google Scholar
  11. 11.
    Earth Explorer, USGS. https://earthexplorer.usgs.gov.Google Scholar
  12. 12.
    ESRI Shapefile Technical Description, Redlands, California, USA: ESRI, 1998.Google Scholar
  13. 13.
    Förste, C., Bruinsma, S.L., Shako, R., et al., A new release of EIGEN-6: The latest combined global gravity field model including LAGEOS, GRACE and GOCE data from the collaboration of GFZ, Potsdam and GRGS Toulouse, Geophys. Res. Abstr., 2012, vol. 14, EGU2012-2821.Google Scholar
  14. 14.
    Förste, C., Bruinsma, S.L., Abrikosov, O., Lemoine, J.-M., Marty, JeanC., Flechtner, F., Balmino, G., Barthelmes, F., and Biancale, R., EIGEN-6C4: The latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse, GFZ Data Services, 2014. doi 10.5880/icgem.2015.1Google Scholar
  15. 15.
    Fu, P., Getting to Know Web GIS, Redlands, California, USA: ESRI Press, 2016.Google Scholar
  16. 16.
    Gvishiani, A.D., Agayan, S.M., Bogoutdinov, Sh.R., and Solov’yev, A.A., Discrete mathematical analysis and geological and geophysical applications, Vestn. Kamchatskoi Reg. Assots. Uchebno-Nauchnyi Tsentr, Nauki Zemle, 2010, vol. 16, no. 2, pp. 109–125.Google Scholar
  17. 17.
    Gvishiani, A.D., Dzeboev, B.A., and Agayan, S.M., FCaZm intelligent recognition system for locating areas prone to strong earthquakes in the Andean and Caucasian mountain belts, Izv., Phys. Solid Earth, 2016, vol. 52, no. 4, pp. 461–491.CrossRefGoogle Scholar
  18. 18.
    Kosmosnimki (Space Imagery). http://kosmosnimki.ru/.Google Scholar
  19. 19.
    Krasnoperov, R.I. and Soloviev, A.A., Analytical geoinformation system for integrated geological–geophysical research in the territory of Russia, Gorn. Zh., 2015, vol. 10, pp. 89–93. doi 10.17580/gzh.2015.10.16CrossRefGoogle Scholar
  20. 20.
    Krasnoperov, R.I., Solov’yev, A.A., Nikolov, B.P., Zharkikh, Yu.I., and Grudnev, A.A., Interactive web application for the integrated study of spatial information on Earth sciences using the geodatabase of the GC RAS, Issled. Geoinf., 2016, vol. 4, no. 1. doi 10.2205/2016BS039Google Scholar
  21. 21.
    Lesur, V., Hamoudi, M., Choi, Y., Dyment, J., and Thebault, E., Building the second version of the World Digital Magnetic Anomaly Map (WDMAM), Earth, Planets Space, 2016, vol. 68, no. 27, pp. 1–13. doi 10.1186/s40623-016-0404-6CrossRefGoogle Scholar
  22. 22.
    Loshkarev, P.A., Tokhiyan, O.O., Kurlykov, A.M., Koshkin, K.V., and Gladkov, A.P., Development of ETRIS RS with application of cloud technologies, Geomatika, 2013, no. 4.Google Scholar
  23. 23.
    Lutz, M., Learning Python, Sebastopol, California, USA: O’Reilly, 2009.Google Scholar
  24. 24.
    Mitchell, A., The ESRI Guide to GIS Analysis, vol. 2, Redlands, California, USA: ESRI, 2005.Google Scholar
  25. 25.
    Nikolov, B.P., Zharkikh, J.I., Soloviev, A.A., Krasnoperov, R.I., and Agayan, S.M., Integration of data mining methods for earth science data analysis in GIS environment, Russ. J. Earth. Sci., 2015, vol. 15, ES4004. doi 10.2205/2015ES000559CrossRefGoogle Scholar
  26. 26.
    Roberts, F.S., What is Big Data and how has it changed?, in Book of Abstracts of the International Conference ‘Data Intensive System Analysis for Geohazard Studies’, Kedrov, E., Ed., Sochi, 2016, BS4002. Google Scholar
  27. 27.
    Roscosmos Geoportal, Satellite Images Service. http:// gptl.ru/.Google Scholar
  28. 28.
    Ross, T.J., Fuzzy Logic with Engineering Application, Chichester: Wiley, 2004.Google Scholar
  29. 29.
    Russell, M., Dojo: The Definitive Guide, Sebastopol, California, USA: O’Reilly, 2008.Google Scholar
  30. 30.
    Science International: Open Data in a Big Data World, Paris: International Council for Science (ICSU), International Social Science Council (ISSC), The World Academy of Sciences (TWAS), Inter Academy Partnership (IAP), 2015.Google Scholar
  31. 31.
    Shako, R., Förste, C., Abrikosov, O., Bruinsma, S., Marty, J., Lemoine, J., Flechtner, F., Neumayer, H., and Dahle, C., EIGEN-6C: A high-resolution global gravity combination model including GOCE data, in Observation of the System Earth from Space—CHAMP, GRACE, GOCE and Future Missions, Flechtner, F., Sneeuw, N., and Schuh, W.-D., Eds., 2013, pp. 155–161. doi 10.1007/978-3-642-32135-1_20Google Scholar
  32. 32.
    Soloviev, A.A., Shur, D.Yu., Gvishiani, A.D., Mikhailov, V.O., and Tikhotskii, S.A., Determination of the magnetic moment vector using cluster analysis of the local linear pseudoinversion of ΔT anomalies, Dokl. Earth Sci., 2005, vol. 404, no. 7, pp. 1068–1071.Google Scholar
  33. 33.
    Soloviev, A.A., Zharkikh, J.I., Krasnoperov, R.I., Nikolov, B.P., and Agayan, S.M., GIS-oriented solutions for advanced clustering analysis of geoscience data using ArcGIS platform, Russ. J. Earth. Sci., 2016, vol. 16, ES6004. doi 10.2205/2016ES000587CrossRefGoogle Scholar
  34. 34.
    Soloviev, A.A., Krasnoperov, R.I., Zharkikh, Yu.I., and Nikolov, B.P., “Cluster Analysis” toolbox for operating in the ArcGIS environment, State Registration of Computer Programs no. 2017617020, 2017.Google Scholar
  35. 35.
    Swenson, S.C., GRACE monthly land water mass grids NETCDF Release 5.0, Pasadena, California, USA, 2012. doi 10.5067/TELND-NC005Google Scholar
  36. 36.
    Tkachev, A.V., Bulov, S.V., Rundkvist, D.V., Pokhno, S.A., Vishnevskaya, N.A., and Nikonov, R.A., Web-GIS “The largest deposits of the world”, Geoinform, 2015, no. 1, pp. 47–59.Google Scholar
  37. 37.
    Tokhiyan, O.O. and Koshkin, K.V., Experience in the development and operation of the geoposal of Roscosmos, Geomatika, 2011, no. 2.Google Scholar
  38. 38.
    Tsendbazar, N., de Bruin, S., and Herold, M., Assessing global land cover reference datasets for different user communities, ISPRS J. Photogramm. Remote Sens., 2015, vol. 103, pp. 93–114. doi 10.1016/j.isprsjprs.2014.02.008CrossRefGoogle Scholar
  39. 39.
    Zadeh, L.A., Fuzzy sets, Inf. Control, 1965, vol. 8, no. 3, pp. 338–353. doi 10.1016/S0019-9958(65)90241-XCrossRefGoogle Scholar
  40. 40.
    Zandbergen, P.A., Python Scripting for ArcGIS, Redlands, California, USA: ESRI, 2014.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. A. Soloviev
    • 1
    • 2
  • R. I. Krasnoperov
    • 1
  • B. P. Nikolov
    • 1
    Email author
  • J. I. Zharkikh
    • 1
  • S. M. Agayan
    • 1
  1. 1.Geophysical Center, Russian Academy of SciencesMoscowRussia
  2. 2.Schmidt Institute of Physics of the Earth, Russian Academy of SciencesMoscowRussia

Personalised recommendations