Izvestiya, Atmospheric and Oceanic Physics

, Volume 54, Issue 9, pp 1152–1157 | Cite as

The Use of NDVI in Digital Mapping of the Content of Available Lithium in the Arable Horizon of Soils in Southwestern Siberia

  • N. V. GoppEmail author
  • O. A. Savenkov
  • T. V. Nechaeva
  • N. V. Smirnova


We have determined the informational value of the Normalized Difference Vegetation Index (NDVI) for predictive mapping of the content of available lithium in the arable horizon of soils of different slope positions: the first (280–310 m) and the second (240–280 m) altitudinal levels. The NDVI is not informative for the diagnostics or mapping of the content of available lithium in soils of small drainage valleys, the width of which is smaller than the resolution of the satellite image (30 m). In the regression model, the NDVI explains 28% of the variation in the content of available lithium in soils. Based on this model, a predictive map of the content of available lithium in soils has been compiled. Data on the spatial distribution pattern of the NDVI calculated based on a Landsat 8 satellite image (resolution of 30 m) were used as an indicator and the cartographical basis for digital mapping. The accuracy of the prediction of the content of available lithium in soils is good (MAPE is 16.9%). It has been revealed that the NDVI values and the content of available lithium in soils of the first altitudinal level are higher than in the second. The differences between NDVI in the drainage valley and on the first altitudinal level are not insignificant.


NDVI available lithium soils regression analysis predictive mapping Landsat 8 



  1. 1.
    Afanas’ev, V.N. and Tsypin, A.P., Ekonometrika v pakete STATISTICA: uchebnoe posobie po vypolneniyu lanoratornykh rabot (Econometrics in the STATISTICA Package: A Textbook for Laboratory Works), Orenburg: GOU OGU, 2008.Google Scholar
  2. 2.
    Akhmetov, R.M., Lithium in the geotechnosphere of the Southern Urals, Geol. Sb., 2009, no. 8, pp. 248–252.Google Scholar
  3. 3.
    Avtsyn, A.P., Zhavoronkov, A.A., Rish, M.A., and Strochkova, A.S., Mikroelementozy cheloveka: etiologiya, klassifikatsiya, organopatologiya (Human Microelementoses: Etiology, Classification, and Organopathology), Moscow: Meditsina, 1991.Google Scholar
  4. 4.
    Blagoveschenskii, Yu.N., Tainy korrelyatsionnykh svyazei v statistike (Secrets of Correlations in Statistics), Moscow: Nauchnaya kniga, 2009.Google Scholar
  5. 5.
    Draper, N. and Smith, H., Applied Regression Analysis, New York: Wiley, 1981; Moscow: Finansy i statistika, 1986.Google Scholar
  6. 6.
    Ekonometrika. Metodicheskie ukazaniya po izucheniyu distsipliny i vypolneniyu kontrol’noy i auditornoy raboty na PEVM (Econometrics. Methodical Instructions for Learning and Test Works on the PC), Moscow: Vuzovskiy uchebnik, 2005.Google Scholar
  7. 7.
    Evdokimova, T.I., Pochvennaya s”yemka (Soil Survey), Moscow: MGU, 1987.Google Scholar
  8. 8.
    Gopp, N.V., Algorithmic approach to compiling digital soil maps from laboratory–field and satellite data, Issled. Zemli Kosmosa, 2013, no. 3, pp. 58–72.Google Scholar
  9. 9.
    Gopp, N.V., Soils of the southwestern part of the Dzhulukul depression in the Altai Republic, Eurasian Soil Sci., 2015, vol. 48, no. 6, pp. 567–577.CrossRefGoogle Scholar
  10. 10.
    Huete, A.R. and Liu, H.Q., An error and sensitivity analysis of the atmospheric- and soil-correcting variants of the NDVI for the MODIS-EOS, IEEE Trans. Geosci. Remote Sens., 1994, no. 32, pp. 897–905.Google Scholar
  11. 11.
    Ivanov, V.V., Ekologicheskaya geokhimiya elementov (Ecological Geochemistry of Elements), vol. 1: s-elements (s-Elements), Moscow: Nedra, 1994.Google Scholar
  12. 12.
    Kabata-Pendias, A. and Pendias, H., Trace Elements in Soils and Plants, London: CRC,; Moscow: Mir, 1989.Google Scholar
  13. 13.
    Kedrinskii, I.A. and Yakovlev, V.G., Li-ionnye akkumulyatory [Li-Ion Batteries), Krasnoyarsk: Platina, 2002. Khimicheskii entsiklopedicheskii slovar’ (Encyclopedic Dictionary of Chemistry), Knunyants, I.L., Ed., Moscow: Sov. entsiklopediya, 1983.Google Scholar
  14. 14.
    Klassifikatsiya i diagnostika pochv Rossii (Classification and Diagnostics of Soils in Russia), Smolensk: Oikumena, 2004.Google Scholar
  15. 15.
    Kumar, P., Pandey, P.C., Singh, B.K., Katiyar, S., Mandal, V.P., Rani, M., Tomarf, V., and Patairiya, S., Estimation of accumulated soil organic carbon stock in tropical forest using geospatial strategy, Egypt. J. Remote Sens. Space Sci., 2016, vol. 19, pp. 109–123.Google Scholar
  16. 16.
    Mashkovskiy, M.D., Lekarstvennye sredstva (Medicines), Moscow: Novaya volna, 2005.Google Scholar
  17. 17.
    McKenzie, N.J. and Ryan, P.J., Spatial prediction of soil properties using environmental correlation, Geoderma, 1999, vol. 89, pp. 67–94.CrossRefGoogle Scholar
  18. 18.
    Michael, A., Anderson, Paul, M., Bertsch, P., et al., Exchange and apparent fixation of lithium in selected soils and clay minerals, Soil Sci., 1989, vol. 148, no. 1, pp. 46–51.CrossRefGoogle Scholar
  19. 19.
    Orlov, A.D., Eroziya i erozionnoopasnye zemli Zapadnoi Sibiri (Erosion and Erosion-Hazardous Lands of Western Siberia), Novosibirsk: Nauka, 1983.Google Scholar
  20. 20.
    Perel’man, A.I. and Kasimov, N.S., Geokhimiya landshafta (Geochemistry of the Landscape), Moscow: Astreya-2000, 1999.Google Scholar
  21. 21.
    Polevoi opredelitel’ pochv Rossii (Field Identifier of Soils in Russia), Moscow: Pochv. inst. im. V. V. Dokuchayeva, 2008.Google Scholar
  22. 22.
    Poluektov, N.S., Meshkova, S.B., and Poluektova, E.N., Analiticheskaya khimiya litiya (Analytical Chemistry of Lithium), Moscow: Nauka, 1975.Google Scholar
  23. 23.
    Rivero, R.G., Grunwald, S., Newman, S., Osborne, T.Z., and Reddy, K.R., Incorporation of ASTER satellite imagery into multivariate geostatistical models to predict soil phosphorus, in Biannual Meeting of Commission 1.5 Pedometrics Division 1 Int. Union of Soil Sci., Naples, Florida, USA: IUSS, 2005, pp. 75–76.Google Scholar
  24. 24.
    Rouse, J.W., Haas, R.H., Schell, J.A., and Deering, D.W., Monitoring vegetation systems in the Great Plains with ERTS, in Third ERTS Symposium NASA SP-351, 1993, pp. 309–317.Google Scholar
  25. 25.
    Rusanov, A.K., Osnovy kolichestvennogo spektral’nogo analiza rud i mineralov (Fundamentals of Quantitative Spectral Analysis of Ores and Minerals), Moscow: Nedra, 1978.Google Scholar
  26. 26.
    Zvonkova, T.V., Prikladnaya geomorfologiya (Applied geomorphology), Moscow: Vysshaya Shkola, 1970.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • N. V. Gopp
    • 1
    Email author
  • O. A. Savenkov
    • 1
  • T. V. Nechaeva
    • 1
  • N. V. Smirnova
    • 1
  1. 1.Institute of Soil Science and Agrochemistry, Siberian Branch, Russian Academy of SciencesNovosibirskRussia

Personalised recommendations