Advertisement

Izvestiya, Atmospheric and Oceanic Physics

, Volume 54, Issue 9, pp 1399–1407 | Cite as

Ground-Based Field Measurements and Calibrations of a New Satellite Spectrometer for Monitoring the Earth’s Ozone Layer

  • Y. S. DobrolenskiyEmail author
  • D. V. Ionov
  • O. I. Korablev
  • A. A. Fedorova
  • E. A. Zherebtsov
  • A. E. Shatalov
  • A. V. Poberovskii
SPACECRAFT, SPACE SYSTEMS, AND PROGRAMS FOR EXPLORATION OF THE EARTH FROM SPACE

Abstract

The results obtained from test ground-based measurements with a new satellite instrument for mo-nitoring the Earth’s ozone layer are considered. The developed spectrometer, called ozonometer-TM, is to be installed aboard small near-Earth spacecraft (Ionosphere). The ozonometer-TM has been developed for monitoring the total ozone content based on the nadir satellite measurements of reflected and scattered light. This instrument operates within a spectral range of 300–500 nm with a spectral resolution of about 0.3–0.6 nm. Its qualification prototype has been manufactured and a number of test ground-based measurements have been performed at the Kislovodsk High-Mountain Station and in Orel. Estimates of the total ozone content have been obtained and compared with independent satellite data obtained during practically the same time period.

Keywords:

total ozone content satellite spectrometer ozonometer 

Notes

ACKNOWLEDGMENTS

This work was supported by the Russian Science Fund (project no. 16-12-10453).

REFERENCES

  1. 1.
    Andrienko, D.A., Barysheva, V.I., Vaschenko, V.N., Volos, V.P., Danilevsky, V.A., Kalsin, A.B., Lebedinets, V.N., Ogurtsov, V.I., Pedorenko, A.B., Tereb, N.V., Chmil’, B.V., and Yavnyi, A.I., The BUFS-1 onboard UV-spectrometer, Issled. Zemli Kosmosa, 1990, no. 1, pp. 67–73.Google Scholar
  2. 2.
    Aura Validation Data Center. http://avdc.gsfc.nasa.gov.Google Scholar
  3. 3.
    Bertaux, J.-L., Korablev, O.I., Perrier, S., Quemerais, E., Montmessin, F., Leblanc, F., Lebonnois, S., Rannou, P., Lefevre, F., Forget, F., Fedorova, A.A., Dimarellis, E., Reberac, A., Fonteyn, D., Chaufray, J.Y., and Guibert, S., SPICAM on Mars Express: Observing modes and overview of UV spectrometer data and scientific results, J. Geophys. Res., 2006, vol. 111, E10S90. doi 10.1029/2006JE002690Google Scholar
  4. 4.
    Bertaux, J.-L., Nevejans, D., Korablev, O.I., Villard, E., Quemerais, E., Neefs, E., Montmessin, F., Leblanc, F., Dubois, J.P., Dimarellis, E., Hauchecorne, A., Lefevre, F., Rannou, P., Chaufray, J.Y., Cabane, M., Cernogora, G., Souchon, G., Semelin, F., Reberac, A., van Ransbeek, E., Berkenbosch, S., Clairquin, R., Muller, C., Forget, F., Hourdin, F., Talagrand, O., Rodin, A., Fedorova, A.A., Stepanov, A.V., Vinogradov, I.I., Kiselev, A.V., Kalinnikov, Y.K., Durry, G., Sandel, B., Stern, A., and Gerard, J.C., SPICAV/SOIR on Venus Express: Three spectrometers to study the global structure and composition of the Venus atmosphere, Planet. Space Sci., 2007, vol. 55, pp. 1653–1672.CrossRefGoogle Scholar
  5. 5.
    Bogumil, K., Orphal, J., Homann, T., Voigt, S., Spietz, P., Fleischmann, O.C., Vogel, A., Hartmann, M., Kromminga, H., Bovensmann, H., Frerick, J., and Burrows, J.P., Measurements of molecular absorption spectra with the SCIAMACHY pre-flight model: Instrument characterization and reference spectra for atmospheric remote sensing in the 230-2380 nm region, J. Photochem. Photobiol. A, 2003, vol. 157, pp. 167–184.CrossRefGoogle Scholar
  6. 6.
    Bovensmann, H., Burrows, J.P., Buchwitz, M., Frerick, J., Noel, S., Rozanov, V.V., Chance, K.V., and Goede, A.P.H., SCIAMACHY: Mission objectives and measurement modes, J. Atmos. Sci., 1999, vol. 56, no. 2, pp. 127–150.CrossRefGoogle Scholar
  7. 7.
    Burrows, J.P., Richter, A., Dehn, A., Deters, B., Himmelmann, S., Voigt, S., and Orphal, J., Atmospheric remote-sensing reference data from GOME: 1. Temperature-dependent absorption cross-sections of NO2 in the 231–794 nm range, J. Quant. Spectrosc. Radiat. Transfer, 1998, vol. 60, pp. 1025–1031.CrossRefGoogle Scholar
  8. 8.
    Burrows, J.P., Weber, M., Buchwitz, M., Roznov, V.V., Ladstatter-Weissenmayer, A., Richter, A., DeBeek, R., Hoogen, R., Bramstedt, K., Eichmann, K.-U., Eisinger, M., and Perner, D., The global ozone monitoring experiment (GOME): Mission concept and first scientific results, J. Atmos. Sci., 1999, vol. 56, pp. 151–175.CrossRefGoogle Scholar
  9. 9.
    Chance, K. and Spurr, R.J.D., Ring effect studies: Rayleigh scattering, including molecular parameters for rotational Raman scattering and the Fraunhofer spectrum, Appl. Opt., 1997, vol. 36, pp. 5224–5230.CrossRefGoogle Scholar
  10. 10.
    Dobber, M.R., Dirksen, R.J., Levelt, P.F., van der Oord, G.H.J., Voors, R.H.M., Kleipool, Q., Jaross, G., Kowalewski, M., Hilsenrath, E., Leppelmeier, G.W., de Vries, J., Dierssen, W., and Rozemeijere, N.C., Ozone monitoring instrument calibration, IEEE Trans. Geosci. Remote Sens., 2006, vol. 44, no. 5, pp. 1209–1238.CrossRefGoogle Scholar
  11. 11.
    Dobrolenskiy, Y.S., Ionov, D.V., Korablev, O.I., Fedorova, A.A., Zherebtsov, E.A., Shatalov, A.E., Mantsevich, S.N., Belyaev, D.A., Vyazovetskiy, N.A., Moiseev, P.P., Tchikov, K.N., Krasavtsev, V.M., Savushkin, A.V., Rumyantsev, D.M., Kananykhin, I.V., Viktorov, A.I., Kozyura, A.V., Moryakin, S.A., and Poberovskii, A.V., Development of a space-borne spectrometer to monitor atmospheric ozone, Appl. Opt., 2015, vol. 54, no. 11, pp. 3315–3322.CrossRefGoogle Scholar
  12. 12.
    Fayt, C. and van Roozendael, M., WinDOAS2.1 Software User Manual, Brussels: Belgian Inst. for Space Aeron., 2001. http://uv-vis.aeronomie.be/software.Google Scholar
  13. 13.
    Gatchin, Yu.A., Krasavtsev, V.M., Tchikov, K.N., and Dobrolenskii, Yu.S., Polychromator for remote sensing and total ozone monitoring of the Earth’s atmosphere, Vestn. Komp’yut. Inf. Tekhnol., 2011, no. 12, pp. 30–33.Google Scholar
  14. 14.
    Grainger, J.F. and Ring, J., Anomalous Fraunhofer line profiles, Nature, 1962, vol. 193, p. 762.CrossRefGoogle Scholar
  15. 15.
    Greenblatt, G.D., Orlando, J.J., Burkholder, J.B., and Ravishankara, A.R., Absorption measurements of oxygen between 330 and 1140 nm, J. Geophys. Res., 1990, vol. 95, pp. 18577–18582.CrossRefGoogle Scholar
  16. 16.
    Heath, D.F., Krueger, A.J., Roeder, H.A., and Henderson, B.D., The solar backscatter ultraviolet and total ozone mapping spectrometer (SBUV/TOMS) for Nimbus 7, Opt. Eng., 1975, vol. 14, no. 4, pp. 323–331.CrossRefGoogle Scholar
  17. 17.
    Iozenas, V.A., Krasnopol’skii, V.A., Kuznetsov, A.P., and Lebedinskii, A.I., Study of the planetary distribution of ozone by UV-spectra measured from satellites, Izv. Akad. Nauk SSSR: Fiz. Atmos. Okeana, 1969, vol. 5, no. 4, pp. 395–403.Google Scholar
  18. 18.
    Kramarova, N.A., Nash, E.R., Newman, P.A., Bhartia, P.K., McPeters, R.D., Rault, D.F., Seftor, C.J., Xu, P.Q., and Labow, G.J., Measuring the Antarctic ozone hole with the new ozone mapping and profiler suite (OMPS), Atmos. Chem. Phys., 2014, vol. 14, pp. 2353–2361.CrossRefGoogle Scholar
  19. 19.
    Kurucz, R.L., Furenlid, I., Brault, J., and Testerman, L., Solar Flux Atlas from 296 to 1300 nm, Sunspot, New Mexico: National Solar Observatory, 1984.Google Scholar
  20. 20.
    Levelt, P.F., van der Oord, G.H.J., Dobber, M.R., Malkki, A., Visser, H., de Vries, J., Stammes, P., Lundell, J.O.V., and Saari, H., The ozone monitoring instrument, IEEE Trans. Geosci. Remote Sens., 2006, vol. 44, no. 5, pp. 1093–1101.CrossRefGoogle Scholar
  21. 21.
    Munro, R., Lang, R., Klaes, D., Poli, G., Retscher, C., Lindstrot, R., Huckle, R., Lacan, A., Grzegorski, M., Holdak, A., Kokhanovsky, A., Livschitz, J., and Eisinger, M., The GOME-2 instrument on the Metop series of satellites: Instrument design, calibration, and level 1 data processing—an overview, Atmos. Meas. Tech., 2016, no. 9, pp. 1279–1301.Google Scholar
  22. 22.
    Network for the Detection of Atmospheric Composition Change. http://www.ndacc.org.Google Scholar
  23. 23.
    Platt, U. and Stuz, J., Differential Optical Absorption Spectroscopy (DOAS), Principles and Applications, Berlin–Heidelberg: Springer, 2008.Google Scholar
  24. 24.
    Pommereau, J.-P. and Goutail, F., O3 and NO2 ground-based measurements by visible spectrometry during Arctic winter and spring 1988, Geophys. Res. Lett., 1988, no. 15, pp. 891–894.Google Scholar
  25. 25.
    Roscoe, H.K., Squires, J.A.C., Oldham, D.J., Sarkissian, A., Pommereau, J.-P., and Goutail, F., Improvements to the accuracy of zenith-sky measurements of total ozone by visible spectrometers, J. Quant. Spectrosc. Radiat. Transfer, 1994, vol. 52, no. 5, pp. 639–648.CrossRefGoogle Scholar
  26. 26.
    Rozanov, V.V., Buchwitz, M., Eichmann, K.-U., de Beek, R., and Burrows, J.P., SCIATRAN—a new radiative transfer model for geophysical applications in the 240–2400 nm spectral region: The pseudo-spherical version, Adv. Space Res., 2002, vol. 29, no. 11, pp. 1831–1835.CrossRefGoogle Scholar
  27. 27.
    U.S. Standard Atmosphere, 1976. http://modelweb.gsfc. nasa.gov/atmos/us_standard.html.Google Scholar
  28. 28.
    Veefkind, J.P., Aben, I., McMullan, K., Forster, H., de Vries, J., Otter, G., Claas, J., Eskes, H.J., de Haan, J.F., Kleipool, Q., van Weele, M., Hasekamp, O., Hoogeveen, R., Landgraf, J., Snel, R., Tol, P., Ingmann, P., Voors, R., Kruizinga, B., Vink, R., Visser, H., and Levelt, P.F., TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications, Remote Sens. Environ., 2012, vol. 120, pp. 70–83.CrossRefGoogle Scholar
  29. 29.
    Volkovitskii, O.A., Kal’sin, A.B., Kozina, T.V., Mil’chenko, V.T., Tereb, N.V., and Groyanova, N.M., Measuring the total content and vertical distribution of ozone from Meteor-3 spacecraft, Izv. Ross. Akad. Nauk: Fiz. Atmos. Okeana, 1993, vol. 29, no. 5, pp. 646–652.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Y. S. Dobrolenskiy
    • 1
    Email author
  • D. V. Ionov
    • 2
  • O. I. Korablev
    • 1
  • A. A. Fedorova
    • 1
  • E. A. Zherebtsov
    • 3
    • 4
  • A. E. Shatalov
    • 3
  • A. V. Poberovskii
    • 2
  1. 1.Space Research Institute, Russian Academy of SciencesMoscowRussia
  2. 2.Faculty of Physics, St. Petersburg State UniversitySt. PetersburgRussia
  3. 3.Astron Electronics Research and Production EnterpriseOrelRussia
  4. 4.University of OuluOuluFinland

Personalised recommendations