Advertisement

Izvestiya, Atmospheric and Oceanic Physics

, Volume 54, Issue 9, pp 1008–1022 | Cite as

Monitoring Anthropogenic Impact on Some Coastal Water Areas of the Black Sea Using Multispectral Satellite Imagery

  • V. G. BondurEmail author
  • V. E. Vorobyev
  • V. V. Zamshin
  • A. N. Serebryany
  • A. A. Latushkin
  • M. E. Li
  • O. V. Martynov
  • A. P. Hurchak
  • D. V. Grinchenko
USE OF SPACE INFORMATION ABOUT THE EARTH

Abstract

The results of comprehensive monitoring of anthropogenic impact on some coastal water areas of the Black Sea are presented. Multispectral satellite imagery and sea truth hydrooptical and hydroacoustical data acquired aboard research vessels are used as the main information sources. In the course of monitoring, more than 300 multispectral Resurs-P, GeoEye, WorldView, Landsat, Sentinel-2 and other satellite images of water areas near the cities of Sevastopol and Gelendzhik were systematized and analyzed. For processing the multispectral satellite imagery, we use an approach based on the calculation and analysis of distributions of relative variability characteristics of the backscattering signal in different regions of the electromagnetic spectrum (“color indices”). The sea truth measurements, which were carried out using a SIPO9 light attenuation index spectral meter and an ADCP acoustic Doppler profilometer, allowed us to detect submerged pollutant plumes and validate the results of satellite data processing. By using the suggested methods, we found and quantified the characteristics of intensive anthropogenic impacts due to submerged outfalls in the coastal waters near Sevastopol and Gelendzhik. Processing the multispectral satellite imagery and sea-truth data revealed several disruptions in the outfall collectors located in these coastal waters.

Keywords:

Earth remote sensing multispectral satellite imagery coastal water areas anthropogenic impact submerged outfalls color index light attenuation index 

Notes

ACKNOWLEDGMENTS

This study was supported of the Ministry of Education and Science of Russia (unique project identifier RFMEFI57716X0234, NSH-10007.2016.5).

REFERENCES

  1. 1.
    Bondur, V.G., Aerospace methods in modern oceanology, in Novye idei v okeanologii (New Ideas in Oceanology), vol. 1: Fizika, Khimiya, Biologiya (Physics, Chemistry, and Biology), Moscow: Nauka, 2004, pp. 55–117.Google Scholar
  2. 2.
    Bondur, V.G., Complex satellite monitoring of coastal water areas, in 31st International Symposium on Remote Sensing of Environment (ISRSE), 2005.Google Scholar
  3. 3.
    Bondur, V.G., Aerospace methods and technologies for monitoring oil and gas areas and facilities, Izv., Atmos. Ocean. Phys., 2011a, vol. 47, no. 9, pp. 1007–1018.CrossRefGoogle Scholar
  4. 4.
    Bondur, V.G., Satellite monitoring and mathematical modelling of deep runoff turbulent jets in coastal water areas, in Waste Water – Evaluation and Management, IntechOpen, 2011b, pp. 155–180. https://www.intechopen. com/books/waste-water-evaluation-and-management/ satellite-monitoring-and-mathematical-modelling-of-deep-runoff-turbulent-jets-in-coastal-water-areas. doi 10.5772/16134Google Scholar
  5. 5.
    Bondur, V.G., Modern approaches to processing large hyperspectral and multispectral aerospace data flows, Izv., Atmos. Ocean. Phys., 2014, vol. 50, no. 9, 840–852.CrossRefGoogle Scholar
  6. 6.
    Bondur, V.G. and Grebenyuk, Yu.V., Remote indication of anthropogenic influence on marine environment caused by depth wastewater plume: Modelling, experiments, Issled. Zemli Kosmosa, 2001, no. 6, pp. 49–67.Google Scholar
  7. 7.
    Bondur, V.G. and Tsidilina, M.N., Features of formation of remote sensing and sea truth databases for the monitoring of anthropogenic impact on ecosystems of coastal water areas, in 31st International Symposium on Remote Sensing of Environment (ISRSE), 2005, pp. 192–195.Google Scholar
  8. 8.
    Bondur, V.G. and Zubkov, E.V., Showing up the small-scale ocean upper layer optical inhomogeneities by the multispectral space images with the high surface resolution. Part 1. The canals and channels drainage effects at the coastal zone, Issled. Zemli Kosmosa, 2005, no. 4, pp. 54–61.Google Scholar
  9. 9.
    Bondur, V.G., Zhurbas, V.M., and Grebenyuk, Yu.V., Mathematical modeling of turbulent jets of deep-water sewage discharge into coastal basins, Oceanology (Engl. Transl.), 2006a, vol. 46, no. 6, pp. 757–771.Google Scholar
  10. 10.
    Bondur, V.G., Keeler, R.N., Starchenkov, S.A., and Rybakova, N.I., Monitoring of the pollution of the ocean coastal water areas using space multispectral high resolution imagery, Issled. Zemli Kosmosa, 2006b, no. 6, pp. 42–49.Google Scholar
  11. 11.
    Bondur, V.G., Filatov, N.N., Grebenyuk, Yu.V., Dolotov, Yu.S., Zdorovennov, R.E., Petrov, M.P., and Tsidilina, M.N., Studies of hydrophysical processes during monitoring of the anthropogenic impact on coastal basins using the example of Mamala Bay of Oahu Island in Hawaii, Oceanology (Engl. Transl.), 2007, vol. 47, no. 6, pp. 769–787.Google Scholar
  12. 12.
    Bondur, V.G., Grebenyuk, Yu.V., and Sabinin, K.D., Variability of internal tides in the coastal water area of Oahu Island (Hawaii), Oceanology (Engl. Transl.), 2008, vol. 48, no. 5, pp. 611–621.Google Scholar
  13. 13.
    Bondur, V.G., Grebenyuk, Yu.V., and Sabinin, K.D., The spectral characteristics and kinematics of short-period internal waves on the Hawaiian shelf, Izv., Atmos. Ocean. Phys., 2009, vol. 45, no. 5, pp. 598–607.CrossRefGoogle Scholar
  14. 14.
    Bondur, V.G., Vorobjev, V.E., Grebenjuk, Y.V., Sabinin, K.D., and Serebryany, A.N., Study of fields of currents and pollution of the coastal waters on the Gelendzhik shelf of the Black Sea with space data, Izv., Atmos. Ocean. Phys., 2013, vol. 49, no. 9, pp. 886–896.CrossRefGoogle Scholar
  15. 15.
    Bondur, V.G., Ivanov, V.A., and Fomin, V.V., Peculiarities of polluted water spreading from a submarine source in stratified coastal environment, Izv., Atmos. Ocean. Phys., 2018, vol. 54, no. 4, pp. 386–393.CrossRefGoogle Scholar
  16. 16.
    Brando, V.E., Anstee, J.M., Wettle, M., Dekker, A.G., Phinn, S.R., and Roelfsema, C., A physics based retrieval and quality assessment of bathymetry from suboptimal hyperspectral data, Remote Sens. Environ., 2009, vol. 113, pp. 755–770.CrossRefGoogle Scholar
  17. 17.
    Copernicus Open Access Hub. https://scihub.copernicus.eu/.Google Scholar
  18. 18.
    Digital Globe Image Finder. https://browse.digitalglobe. com/.Google Scholar
  19. 19.
    Exelis VIS. http://harrisgeospatial.com/.Google Scholar
  20. 20.
    Google Earth. http://www.google.ru/intl/ru/earth/.Google Scholar
  21. 21.
    Israel, Yu.A. and Tsyban, A.V., Antropogennaya ekologiya okeana (Anthropogenic Ocean Ecology), Moscow: Flinta Nauka, 2009.Google Scholar
  22. 22.
    Ivanov, V.A., Sovga, E.E., and Katunina, E.V., Assessment of anthropogenic impact on the ecosystem of Herakleian Peninsula water area near submerged wastewater outfalls, in Processy v geosredakh (Processes in Geoenvironments), 2016, no. 1, pp. 62–68.Google Scholar
  23. 23.
    Keeler, R., Bondur, V., and Vithanage, D., Sea truth measurements for remote sensing of littoral water, Sea Technol., 2004, no. 4, pp. 53–58.Google Scholar
  24. 24.
    LandsatLook Viewer. https://landsatlook.usgs.gov/.Google Scholar
  25. 25.
    Li, M.E., Development of hydrooptical equipment in MHI, in Sistemy kontrolya okruzhayuschei sredy (Environmental Control Systems), Sevastopol: EKOSI-Hydrophisica, 2012, no. 17, pp. 7–20.Google Scholar
  26. 26.
    Mankovsky, V.I., Mankovskaya, E.V., and Soloviev, M.V., Gidroopticheskie kharakteristiki Chernogo moray. Spravochnik (Hydrooptical Characteristics of the Black Sea. A Book of Reference), Sevastopol: MGI, 2009.Google Scholar
  27. 27.
    Optika okeana (Ocean Optics), vol. 1: Fizichekaya optika okeana (Physical Ocean Optics), Monin, A.S., Ed., Moscow: Nauka, 1983, pp. 208–234.Google Scholar
  28. 28.
    Sabinin, K.D. and Serebryanyi, A.N., Results of using acoustic doppler current profilers for studying the spatial structure of the marine environment, Acoustical Phys, 2012. SNAP. http://step.esa.int/main/toolboxes/snap/.Google Scholar
  29. 29.
    Vahtmäe, E., Kutser, T., Martin, G., and Kotta, J., Feasibility of hyperspectral remote sensing for mapping benthic macroalgal cover in turbid coastal waters—a Baltic Sea case study, Remote Sens. Environ., 2006, vol. 101, no. 3, pp. 342–351.CrossRefGoogle Scholar
  30. 30.
    Wikimapia. http://wikimapia.org/.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. G. Bondur
    • 1
    Email author
  • V. E. Vorobyev
    • 1
  • V. V. Zamshin
    • 1
  • A. N. Serebryany
    • 1
  • A. A. Latushkin
    • 2
  • M. E. Li
    • 2
  • O. V. Martynov
    • 2
  • A. P. Hurchak
    • 2
  • D. V. Grinchenko
    • 2
  1. 1.AEROCOSMOS Research Institute for Aerospace MonitoringMoscowRussia
  2. 2.Marine Hydrophysical Institute, Russian Academy of SciencesSevastopolRussia

Personalised recommendations