Advertisement

Izvestiya, Atmospheric and Oceanic Physics

, Volume 54, Issue 9, pp 1202–1213 | Cite as

Statistical Model of Physical Parameters of Clouds Based on MODIS Thematic Data

  • V. G. Astafurov
  • A. V. SkorokhodovEmail author
PHYSICAL PRINCIPLES OF EARTH STUDIES FROM SPACE

Abstract—A statistical model is suggested for the physical parameters of different cloud types. This model has been developed through a comparison of MODIS thematic data with the results of global cloud field classification using neural network technology. The model is a set of one- and two-parametric distributions that describe fluctuations of physical parameters of different cloud types. The distribution parameters are estimated. The comparative analysis is carried out of the parameters under study for different cloud types. The features of different cloud types are determined. The statistical model developed is compared with similar works in this field and international databases; the results show their good consistency. The statistical model suggested can be regarded as a supplement to already existing cloud field models.

Keywords:

neural network technology distribution laws classification goodness of fit cloudiness satellite data statistical model physical features 

Notes

ACKNOWLEDGMENTS

The work was supported by the Russian Foundation for Basic Research (project no. 16-37-60019 mol_a_dk).

REFERENCES

  1. 1.
    Aleksanin, A.I. and Kim, V., Automatic detection of internal waves on satellite images and assessment of the mixed layer density, Issled. Zemli Kosmosa, 2015, no. 1, pp. 44–52.Google Scholar
  2. 2.
    Astafurov, V.G. and Evsyutkin, T.V., A software system for the automatic classification of the texture of cirrus cloudiness on the basis of a neural-fuzzy network, Dokl. Tomsk. Gos. Univ. Sist. Upravl. Radioelektr., 2015, vol. 36, no. 2, pp. 125–129.Google Scholar
  3. 3.
    Astafurov, V.G. and Skorokhodov, A.V., Neural network technologies for classification of cloudiness by the texture of high-resolution MODIS images, Issled. Zemli Kosmosa, 2014, no. 5, pp. 39–49.Google Scholar
  4. 4.
    Astafurov, V.G. and Skorokhodov, A.V., Classification of multi-layer cloudiness from MODIS data using neural network technologies and the fuzzy logic approach, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2015, vol. 12, no. 6, pp. 162–173.Google Scholar
  5. 5.
    Bespalov, D.P., Devyatkin, A.M., Dovgalyuk, Yu.A., Kondratyuk, V.I., Kuleshov, Yu.V., Svetlova, T.P., Suvorov, S.S., and Timofeev, V.I., Atlas oblakov (Atlas of Clouds), St. Petersburg: D’ART, 2011.Google Scholar
  6. 6.
    Chen, T., Rossow, W.B., and Zhang, Y., Radiative effects of cloud-type variations, J. Clim., 2000, vol. 13, no. 1, pp. 264–286.CrossRefGoogle Scholar
  7. 7.
    Chernokulsky, A.V. and Mokhov, I.I., Comparative analysis of global and zonal cloudiness characteristics from different satellite and ground-based data, Issled. Zemli Kosmosa, 2010, no. 3, pp. 12–29.Google Scholar
  8. 8.
    EOS, NASA’s Earth Observing System Project Science Office, 1980–2016. http://eospso.nasa.gov. Accessed May 25, 2016.Google Scholar
  9. 9.
    Federal Service of Hydrometeorology and Environmental Monitoring (Rosgidromet), Code for the operational transmission of meteorological observation data from the Rosgidromet network of stations, Moscow: Triada, 2013.Google Scholar
  10. 10.
    ISCCP, International Satellite Cloud Climatology Project, 1982–2010. http://isccp.giss.nasa.gov. Accessed May 25, 2016.Google Scholar
  11. 11.
    Jakob, C., Cloud cover in the ECMWF reanalysis, J. Clim., 1999, vol. 12, no. 4, pp. 947–959.CrossRefGoogle Scholar
  12. 12.
    Kharin, A.S., Luzan, P.I., Shatunova, M.V., and Dmitrieva-Arrago, L.R., Method for calculating the components of radiation energetics of the Earth–atmosphere system in the infrared spectral band, and the role of cloud microphysics, in Trudy Gidromettsentera Rossii (Proceedings of the Hydrometcenter of Russia), 2010, vol. 344, pp. 59–77.Google Scholar
  13. 13.
    LAADS WEB, Level 1 and Atmosphere Archive and Distribution System, 2000–2016. https://ladsweb.nascom. nasa.gov/index.html. Accessed May 25, 2016.Google Scholar
  14. 14.
    Mathwave. Data Analysis and Simulations, 2004–2016. http://www.mathwave.com/articles/distribution_fitting. html. Accessed May 25, 2016.Google Scholar
  15. 15.
    Matveev, L.T., On the causes of cloud formation, Meteorol. Gidrol., 1978, no. 8, pp. 25–31.Google Scholar
  16. 16.
    Matveev, L.T., Kurs obshhei meteorologii. Fizika atmosfery (Course of General Meteorology. Atmospheric Physics), Leningrad: Gidrometeoizdat, 1984.Google Scholar
  17. 17.
    MODIS-Atmosphere, U.S. Government Computer System, 2000–2016. http://modis-atmos.gsfc.nasa.gov. Accessed May 25, 2016.Google Scholar
  18. 18.
    NASA CERES, Clouds and the Earth’s Radiant Energy System Information and Data, 1999–2016. http:// ceres.larc.nasa.gov. Accessed May 25, 2016.Google Scholar
  19. 19.
    Norris, J.R., Multidecadal changes in near-global cloud cover and estimated cloud cover radiative forcing, J. Geophys. Res., 2005, vol. 110, D08206. doi 10.1029/2004JD005600Google Scholar
  20. 20.
    Nunalee, C.G. and Basu, S., On the periodicity of atmospheric von Karman vortex streets, Environ. Fluid Mech., 2014, vol. 14, no. 6, pp. 1335–1355.CrossRefGoogle Scholar
  21. 21.
    Oblaka i oblachnaya atmosfera. Spravochnik (Clouds and Cloudy Atmosphere. A Reference Book), Mazin, A.Kh. and Khrgian, A.Kh., Leningrad: Gidrometeoizdat, 1989.Google Scholar
  22. 22.
    OGIMET, Professional information about meteorological conditions in the world, 2005–2016. http://www. ogimet.com/home.phtml.en. Accessed May 25, 2016.Google Scholar
  23. 23.
    Prokhorov, S.A., Lezin, I.A., and Soldatova, I.V., Approximation of distribution laws with orthogonal polynomials, Vestn. Samarsk. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki, 2005, no. 34, pp. 128–136.Google Scholar
  24. 24.
    Quante, M., The role of clouds in the climate system, J. Phys IV France, 2004, vol. 121, pp. 61–86.CrossRefGoogle Scholar
  25. 25.
    Shakina, N.P., Gorlach, I.A., Skriptunova, E.N., and Komas’ko, N.I., Icing of aircraft engines in ice crystal clouds: A case study, Russ. Meteorol. Hydrol., 2014, vol. 39, no. 2, pp. 121–125.CrossRefGoogle Scholar
  26. 26.
    SSEC, Space Science and Engineering Data Center, 2005–2016. http://www.ssec.wisc.edu/datacenter/. Accessed May 25, 2016.Google Scholar
  27. 27.
    Volkova, E.V. and Uspenskiy, Assessment of daytime cloud-cover parameters from METEOSAT-8 geostationary satellite data, Sovrem. Probl. Distantsionnogo Issled. Zemli Kosmosa, 2008, vol. 1, no. 5, pp. 441–450.Google Scholar
  28. 28.
    Wylie, D.P., Menzel, W.P., Woolf, H.M., and Strabala, K.I., For years of global cirrus cloud statistics using HIRS, J. Clim., 1994, vol. 7, no. 12, pp. 1972–1986.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of SciencesTomskRussia
  2. 2.Tomsk State University of Control Systems and RadioelectronicsTomskRussia

Personalised recommendations