Advertisement

Izvestiya, Atmospheric and Oceanic Physics

, Volume 54, Issue 8, pp 794–804 | Cite as

Quantitative Study of Relationships of Hydrogen, Methane, Radon, and the Atmospheric Electric Field

  • V. N. ShuleikinEmail author
Article
  • 6 Downloads

Abstract

In this paper we develop a model representation of the relationships of hydrogen, methane, radon, and the atmospheric electric field based on the results of experimental observations. Bubble formations of hydrogen and methane are the only carriers of radon in the surficial soil layers and atmosphere. Light ions are formed as a result of ionization and, when combined with neutral condensation nuclei, they form heavy ions affecting the atmospheric electric field. Outside the hydrocarbon clusters, hydrogen and methane are related by an exponential relationship. Under stable weather conditions, the atmospheric radon and its inverse quantity, which is the atmospheric electric field, correlate with the radon content in the soil through the carrier-gases density. Owing to the lower molecular weight, hydrogen at comparable concentrations of volatile gases is the main carrier of radon into the surficial soil layers and atmosphere near the surface. At a methane-to-hydrogen concentration ratio of ~6.4, the volatile gases are equally involved in the transport of the ionizer. At an average ratio of their concentrations (~47), methane is the major carrier gas of radon. Upon increasing concentrations of carrier gases, the sensitivity of the atmospheric electric field to changes in their concentrations increases. Based on observations of the atmospheric electric field and the hydrogen and radon content in the atmosphere, the result significantly increases the accuracy of indirect control over the methane content in the soil.

Keywords:

atmospheric electric field concentrations radon hydrogen methane 

Notes

REFERENCES

  1. 1.
    Baranov, V.I., Radiometriya (Radiometry), Moscow: AN SSSR, 1956. Google Scholar
  2. 2.
    Frenkel’, Ya.I., Teoriya yavlenii atmosfernogo elektrichestva (Theory of Atmospheric Electricity Phenomena), Moscow: Librokom, 2009.Google Scholar
  3. 3.
    Gergedava, Sh.K., Buzinov, S.N., Shuleikin, V.N., Rudakov, V.P., and Voitov, G.I., Nontraditional geophysics for underground gas storages, Neft, Gaz Biznes, 2001, no. 5, pp. 2–7.Google Scholar
  4. 4.
    Imyanitov, I.M. and Chubarina, E.V., Elektrichestvo svobodnoi atmosfery (Electricity of the Free Atmosphere), Leningrad: Gidrometeoizdat, 1965.Google Scholar
  5. 5.
    Kudrinskaya, T.V., Experimental studies of ionization processes in the atmospheric surface layer, Extended Abstract of Cand. Sci. (Phys.–Math.) Dissertation, Nal’chik, 2013.Google Scholar
  6. 6.
    Milne, J., Earthquakes in connection with electric and magnetic phenomena, Trans. Seismol. Soc. Jpn., 1890, vol. 15, pp. 135–164.Google Scholar
  7. 7.
    Nikolaev, I.N. and Litvinov, A.V., Procedure for measuring low concentrations of H2 and H2S above a water surface, Meas. Tech., 2004, vol. 47, no. 5, pp. 509–511.CrossRefGoogle Scholar
  8. 8.
    Nikolaev, I.N., Litvinov, A.V., and Khalfin, T.M., Automatic gas analyzers for hydrogen in the volumetric concentration range 10–6–1.0%, Meas. Tech., 2004, vol. 47, no. 7, pp. 725–728.CrossRefGoogle Scholar
  9. 9.
    Redin, A.A., Mathematical modeling of electrodynamic processes in the surface layer under aerosol pollution of the atmosphere, Extended Abstract of Cand. Sci. (Phys.–Math.) Dissertation, Taganrog, 2011.Google Scholar
  10. 10.
    Redin, A.A., Kupovykh, G.V., and Boldyrev, A.S., Electrodynamic model of turbulent surface layer in the presence of multiply charged aerosol particles, in VII Vseros. konf. po atmosfernomu elektrichestvu (VII All-Russian Conference on Atmospheric Electricity), St. Petersburg, 2012a, vol. 1, pp. 199–201.Google Scholar
  11. 11.
    Redin, A.A., Kupovykh, G.V., Boldyrev, A.S., and Bukantis, A.A., Electrodynamic model of convective–turbulent surface layer of the atmosphere, in VII Vseros. konf. po atmosfernomu elektrichestvu (VII All-Russian Conference on Atmospheric Electricity), St. Petersburg, 2012b, vol. 1, pp. 202–203.Google Scholar
  12. 12.
    Rukovodstvo po nazemnym nablyudeniyam za elementami atmosfernogo elektrichestva (Guide on Ground-Based Observations of Atmospheric Electricity Elements), Leningrad: GGO im. A.I. Voeikova, 1960.Google Scholar
  13. 13.
    Semenov, K.A., Good weather and atmospheric electricity elements, Tr. Gl. Geofiz. Obs. im. A.I. Voeikova, 1982, no. 455, pp. 112–119.Google Scholar
  14. 14.
    Shuleikin, V.N., Results of observations of polar conductivities of soil air within urban development area, in Razvitie metodov i sredstv eksperimental’noi geofiziki (Development of Methods and Tools in Experimental Geophysics), Moscow, 1996, vol. 2, pp. 235–240.Google Scholar
  15. 15.
    Shuleikin, V.N., Radon transfer to the near-surface soil layers and surface atmosphere, Geofiz. Protsessy Biosfera, 2013a, vol. 12, no. 2, pp. 57–66.Google Scholar
  16. 16.
    Shuleikin, V.N., The reverse electrodynamic effect: Computation and experiment, Nauka Tekhnol. Razrab., 2013b, no. 2, pp. 17–27.Google Scholar
  17. 17.
    Shuleikin, V.N., Radon transport to the near-surface soil and air layers, Izv., Atmos. Ocean. Phys., 2013c, vol. 49, no. 8, pp. 853–859.CrossRefGoogle Scholar
  18. 18.
    Shuleikin, V.N., Water vapors, atmospheric electricity and radon transfer to the near-surface soil layers and the atmosphere, Geofiz. Protsessy Biosfera, 2014, vol. 13, no. 3, pp. 67–75.Google Scholar
  19. 19.
    Shuleikin, V.N., Shchukin, G.G., and Kupovykh, G.V., Razvitie metodov i sredstv prikladnoi geofiziki – atmosferno-elektricheskii monitoring geologicheskikh neodnorodnostei i zon geodinamicheskikh protsessov (Development of Methods and Tools in Applied Geophysics: Atmospheric Electrical Monitoring of Geological Inhomogeneities and Zones of Geodynamical Processes), St. Petersburg: TsOPRGGMU, 2015.Google Scholar
  20. 20.
    Sidorin, A.Ya., On disturbances in the gradient of electric potential of the atmosphere on the Garm polygon in 1949–1950, in Elektricheskoe vzaimodeistvie geosfernykh obolochek (Electric Interaction of Geospheric Shells), Moscow: OIFZ RAN, 2000a, pp. 148–165.Google Scholar
  21. 21.
    Sidorin, A.Ya., Disturbances in the gradient of atmospheric electric potential and the earthquakes on the Garm polygon, Seism. Prib., 2000b, vol. 33, pp. 78–95.Google Scholar
  22. 22.
    Sisigina, T.I., Measurements of radon exhalation from the surface of rocks, in Voprosy yadernoi meteorologii (Problems in Nuclear Meteorology), Moscow: Gosatomizdat, 1962, pp. 104–111.Google Scholar
  23. 23.
    Sisigina, T.I., Radon exhalation from the surface of several soil types in the European part of the USSR and Kazakhstan, in Radioaktivnye izotopy v atmosfere i ikh ispol’zovanie v meteorologii (Radioactive Isotopes in the Atmosphere and Yjeir Use in Meteorology), Moscow: Atomizdat, 1965, pp. 40–48.Google Scholar
  24. 24.
    Styro, B.I., Voprosy yadernoi meteorologii (Problems in Nuclear Meteorology), Vilnius: Gidrometeoizdat, 1959.Google Scholar
  25. 25.
    Tverskoi, P.N., Kurs meteorologii (A Course of Meteorology), Leningrad: Gidrometeoizdat, 1951.Google Scholar
  26. 26.
    Voitov, G.I., Rudakov, V.P., Shuleikin, V.N., Kozlova, N.S., and Baranova, L.V., Emanation and electrical effects in the subsoils atmosphere above Kaluga impact ring structure, Ross. Zh. Nauk Zemle, 1999, vol. 1, no. 6, pp. 503–510.Google Scholar
  27. 27.
    Voitov, G.I., Gusev, A.S., Shuleikin, V.N., et al., Emanation and electrical effects above intricate tectonic structures (based on the near-fracture Aleksandrov Uplift Zone, Belorussia), Dokl. Earth Sci., 2000, vol. 370, no. 1, pp. 92–95.Google Scholar
  28. 28.
    Zubarev, A.P. and Shuleikin, V.N., Kompleksnyi geofizicheskii i geokhimicheskii kontrol' pri ekspluatatsii podzemnykh gazokhranilishch (Integrated Geophysical and Geochemical Control in the Operation of Underground Gas Storages), Moscow: Gazprom, 2009.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Oil and Gas Problems, Russian Academy of SciencesMoscowRussia

Personalised recommendations