Advertisement

Izvestiya, Atmospheric and Oceanic Physics

, Volume 54, Issue 6, pp 545–557 | Cite as

Regional Photochemical Surface-Ozone Sources in Europe and Western Siberia

  • K. B. MoiseenkoEmail author
  • Yu. A. Shtabkin
  • E. V. Berezina
  • A. I. Skorokhod
Article
  • 29 Downloads

Abstract

The influence of climatically significant regional sources of NOx (=NO + NO2), CO, and biogenic volatile organic compounds (VOCs) on the photochemical generation of surface ozone (O3) in the lower troposphere over Europe and Siberia is studied. The sensitivity of the O3 field to the total emissions of ozone precursors is calculated using a global 3D chemical transport model (GEOS-Chem) based on the 2007–2012 databases for anthropogenic (EDGAR) and biogenic (MEGAN, GFED) emissions. The amount of photochemical ozone generated during the summer months is in good correlation with the air-mass age determined from the ratio between \({\text{N}}{{{\text{O}}}_{x}}\) and (total reactive nitrogen) \({\text{N}}{{{\text{O}}}_{y}},\) when the mean contribution of regional sources is \({\Delta\text{}}{{{\text{O}}}_{{\text{3}}}}\) ~ 10–15 ppb, which is 20–30% of its background concentration in the middle latitudes (\({{{\text{O}}}_{{\text{3}}}}\) ~ 35–45 ppb). The quantitative estimates of the ozone production efficiency \({{{\Delta\text{}}{{{\text{O}}}_{{\text{3}}}}} \mathord{\left/ {\vphantom {{{\Delta\text{}}{{{\text{O}}}_{{\text{3}}}}} \Delta }} \right. \kern-0em} \Delta }{\text{(N}}{{{\text{O}}}_{y}} - {\text{N}}{{{\text{O}}}_{x}}{\text{)}}\) (\({\text{N}}{{{\text{O}}}_{y}}\) is the total reactive nitrogen) for the summer months of the indicated period (~10–30 mol O3/mol NOx) are in good agreement with the theory of photochemical ozone generation under the conditions of slightly polluted air.

Keywords:

surface ozone anthropogenic pollution nitrogen oxides biogenic emissions ozone production efficiency GEOS-Chem model regional transport 

Notes

ACKNOWLEDGMENTS

This work was supported by the Russian Scientific Fund (project no. 14-47-00049).

REFERENCES

  1. 1.
    O. Wild and H. Akimoto, “Intercontinental transport of ozone and its precursors in a three-dimensional CTM,” J. Geophys. Res. 106, 27729–27744 (2001).CrossRefGoogle Scholar
  2. 2.
    O. Wild, P. Pochanart, and H. Akimoto, “Trans-Eurasian transport of ozone and its precursors,” J. Geophys. Res. 109, D11302 (2004). doi 10.1029/2003JD004501CrossRefGoogle Scholar
  3. 3.
    A. V. Vivchar, K. B. Moiseenko, R. A. Shumskii, and A. I. Skorokhod, “Identifying anthropogenic sources of nitrogen oxide emissions from calculations of Lagrangian trajectories and the observational data from a tall tower in Siberia during the spring–summer period of 2007,” Izv., Atmos. Ocean. Phys. 45 (3), 302–3313 (2009).CrossRefGoogle Scholar
  4. 4.
    X. Chi, J. Winderlich, J. -C. Mayer, A. V. Panov, M. Heimann, W. Birmili, J. Heintzenberg, Y. Cheng, and M. O. Andreae, “Long-term measurements of aerosol and carbon monoxide at the ZOTTO tall tower to characterize polluted and pristine air in the Siberian taiga,” Atmos. Chem. Phys. 13, 12271–12298 (2013).CrossRefGoogle Scholar
  5. 5.
    X. Li, J. Liu, D. L. Mauzerall, L. K. Emmons, S. Walters, L. W. Horowitz, and S. Tao, “Effects of trans-Eurasian transport of air pollutants on surface ozone concentrations over Western China,” J. Geophys. Res.: Atmos. 119, 12338–12354 (2014). doi 10.1002/ 2014JD021936Google Scholar
  6. 6.
    J. Liu, J. A. Logan, D. B. A. Jones, N. J. Livesey, I. Megretskaia, C. Carouge, and P. Nedelec, “Analysis of CO in the tropical troposphere using Aura satellite data and the GEOS-Chem model: Insights into transport characteristics of the GEOS meteorological products,” Atmos. Chem. Phys. 10, 12207–12232 (2010).CrossRefGoogle Scholar
  7. 7.
    D. D. Parrish, E. J. Dunlea, E. L. Atlas, S. Schauffler, S. Donnelly, V. Stroud, A. H. Goldstein, D. B. Millet, M. McKay, D. A. Jaffe, H. U. Price, P. G. Hess, F. Flocke, and J. M. Roberts, “Changes in the photochemical environment of the temperate North Pacific troposphere in response to increased Asian emissions,” J. Geophys. Res. 109, D23S18 (2004). doi 10.1029/ 2004JD004978Google Scholar
  8. 8.
    Q. Li, D. J. Jacob, J. W. Munger, R. M. Yantosca, and D. D. Parrish, “Export of NOy from the North American boundary layer: Reconciling aircraft observations and global model budgets,” J. Geophys. Res. 109 (D2) (2004). doi 10.1029/2003jd004086Google Scholar
  9. 9.
    A. Stohl, S. Eckhardt, C. Forster, P. James, and N. Spichtinger, “On the pathways and timescales of intercontinental air pollution transport,” J. Geophys. Res. 107 (D23) 4684 (2002). doi 10.1029/2001JD001396Google Scholar
  10. 10.
    M. Auvray and I. Bey, “Long-range transport to Europe: Seasonal variations and implications for the European ozone budget,” J. Geophys. Res. 110, D11303 (2005). doi 10.1029/2004JD005503CrossRefGoogle Scholar
  11. 11.
    K. E. Christian, W. H. Brune, and J. Mao, “Global sensitivity analysis of the GEOS-Chem chemical transport model: Ozone and hydrogen oxides during ARCTAS (2008),” Atmos. Chem. Phys. Discuss. (2016). doi 10.5194/acp-2016-863Google Scholar
  12. 12.
    S. Wu, B. N. Duncan, D. J. Jacob, A. M. Fiore, and O. Wild, “Chemical Nonlinearities in Relating Intercontinental Ozone Pollution To Anthropogenic Emissions,” Geophys. Res. Lett. 36, L05806 (2009). doi 10.1029/2008GL036607Google Scholar
  13. 13.
    P. Pochanart, H. Akimoto, Y. Kajii, V. M. Potemkin, and T. V. Khodzher, “Regional background ozone and carbon monoxide variations in remote Siberia/East Asia,” J. Geophys. Res. 108 (D1), 4028 (2003).CrossRefGoogle Scholar
  14. 14.
    Yu. A. Shtabkin, K. B. Moiseenko, A. I. Skorokhod, A. V. Vasileva, and M. Heimann, “Sources of and variations in tropospheric CO in Central Siberia: Numerical experiments and observations at the Zotino tall tower observatory,” Izv. Atmos. Ocean. Phys. 52 (1), 45–56 (2016).CrossRefGoogle Scholar
  15. 15.
    Yu. A. Shtabkin and K. B. Moiseenko, “Seasonal variations in surface concentrations of CO and ozone in Central Siberia: Observations and numerical simulation,” in Proceedings of the XIV Conference of Young Scientists “Interaction of Fields and Radiation with Matter”, September 14–18, 2015 (Irkutsk, 2016), pp. 352–354.Google Scholar
  16. 16.
    A. Roiger, H. Schlager, A. Schafler, H. Huntrieser, M. Scheibe, H. Aufmhoff, O. R. Cooper, H. Sodemann, A. Stohl, J. Burkhart, M. Lazzara, C. Schiller, K. S. Law, and F. Arnold, “In-situ observation of Asian pollution transported into the Arctic lowermost stratosphere,” Atmos. Chem. Phys. 11, 10975–10994 (2011). doi 10.5194/acp-11-10975-2011CrossRefGoogle Scholar
  17. 17.
    A. V. Vasileva, K. B. Moiseenko, J.-C. Mayer, N. Jurgens, A. Panov, M. Heimann, and M. O. Andreae, “Assessment of the regional atmospheric impact of wildfire emissions based on CO observations at the ZOTTO tall tower station in Central Siberia,” J. Geophys. Res. 116, D07301 (2011). doi 10.1029/2010JD014571CrossRefGoogle Scholar
  18. 18.
    S. Sillman, “The relation between ozone, NOx and hydrocarbons in urban and polluted rural environments,” Atmos. Environ. 33 (12), 1821–1845 (1999).CrossRefGoogle Scholar
  19. 19.
    T. Pierce, C. Geron, L. Bender, et al., “Influence of increased isoprene emissions on regional ozone modeling,” J. Geophys. Res. 103, 25611–25629 (1998).CrossRefGoogle Scholar
  20. 20.
    S. Sillman, “Tropospheric ozone and photochemical smog,” in Treatise on Geochemistry, Vol. 9: Environmental Geochemistry (Elsevier, 2003), Chap. 11, pp. 407–431.Google Scholar
  21. 21.
    S. C. Liu, M. Trainer, F. C. Fehsenfeld, D. D. Parrish, E. J. Williams, D. W. Fahey, G. Hubler, and P. C. Murphy, “Ozone production in the rural troposphere and the implications for regional and global ozone distributions,” J. Geophys. Res. 92 (D4) 4191–4207 (1987). doi 10.1029/JD092iD04p04191CrossRefGoogle Scholar
  22. 22.
    A. Guenther, C. N. Hewitt, D. Erickson, R. Fall, C. Geron, T. Graedel, P. Harley, L. Klinger, M. Lerdau, W. A. McKay, T. Pierce, B. Scholes, R. Steinbrecher, R. Tallamraju, J. Taylor, and P. Zimmermann, “A global model of natural volatile organic compound emissions,” J. Geophys. Res. 100, 8873–8892 (1995).CrossRefGoogle Scholar
  23. 23.
    E. V. Berezina, K. B. Moiseenko, A. I. Skorokhod, N. F. Elansky, and I. B. Belikov, “Aromatic volatile organic compounds and their role in ground-level ozone formation in Russia,” Dokl. Earth Sci. 474 (1), 599–603 (2017).CrossRefGoogle Scholar
  24. 24.
    P. S. Monks, “Gas-phase radical chemistry in the troposphere,” Chem. Soc. Rev. 34 (5), 376–395 (2005).CrossRefGoogle Scholar
  25. 25.
    Atmospheric Composition over Northern Eurasia: TROICA Experiments, Ed. by N. F. Elansky (Agrospas, Moscow, 2009) [in Russian].Google Scholar
  26. 26.
    N. V. Pankratova, N. F. Elansky, I. B. Belikov, O. V. Lavrova,A. I. Skorokhod, and R. A. Shumsky, “Ozone and nitric oxides in the surface air over Northern Eurasia according to observational data obtained in TROICA experiments,” Izv., Atmos. Ocean. Phys. 47 (3), 313–328 (2011).CrossRefGoogle Scholar
  27. 27.
    M. Yu. Arshinov, B. D. Belan, D. K. Davydov, D. E. Savkin, T. K. Sklyadneva, G. N. Tolmachev, and A. V. Fofonov, “Mezomasshtabnye razlichiya v kontsentratsii ozona v prizemnom sloe vozdukha v Tomskom regione (2010-2012 gg.),” Tr. Inst. Obshch. Fiz. im. A. M. Prokhorova 71, 106–117 (2015).Google Scholar
  28. 28.
    P. S. Monks, “A review of the observations and origins of the spring ozone maximum,” Atmos. Environ. 34 (21), 3545–3561 (2000).CrossRefGoogle Scholar
  29. 29.
    S. Sillman and D. He, “Some theoretical results concerning O3–NOx–VOC chemistry and NOx–VOC indicators,” J. Geophys. Res. 107 (D22), 4629 (2002). doi 10.1029/2001JD001123CrossRefGoogle Scholar
  30. 30.
    W. P. L. Carter, “Development of ozone reactivity scales for volatile organic compounds,” J. Air Waste Manage. Assoc. 44, 881–899 (1994).CrossRefGoogle Scholar
  31. 31.
    R. Atkinson, “Atmospheric chemistry of VOCs and NOx,” Atmos. Environ. 34, 2063–2101 (2000).CrossRefGoogle Scholar
  32. 32.
    S. Sillman, J. A. Logan, and S. C. Wofsy, “The sensitivity of ozone to nitrogen oxides and hydrocarbons in regional ozone episodes,” J. Geophys. Res. 95, 1837–1851 (1990).CrossRefGoogle Scholar
  33. 33.
    M. Trainer, “Correlation of ozone with NOy in photochemically aged air,” J. Geophys. Res. 98 (D2), 2917–2925 (1993). doi 10.1029/92JD01910CrossRefGoogle Scholar
  34. 34.
    L. I. Kleinman, P. H. Daum, Y. Lee, L. J. Nunnermacker, S. R. Springston, J. Weinstein-Lloyd, and J. Rudolph, “Ozone production efficiency in an urban area,” J. Geophys. Res. 107 (D23), 4733 (2002).CrossRefGoogle Scholar
  35. 35.
    F. J. Dentener and P. J. Crutzen, “Reaction of N2O5 on tropospheric aerosols: impact on the global distributions of NOx, O3, and OH,” J. Geophys. Res. 98, 7149–7163 (1993).CrossRefGoogle Scholar
  36. 36.
    A. von Engeln and J. Teixeira, “A planetary boundary layer height climatology derived from ECMWF reanalysis data,” J. Clim. 26, 6575–6590 (2013).CrossRefGoogle Scholar
  37. 37.
    I. Bey, D. J. Jacob, R. M. Yantosca, J. A. Logan, B. D. Field, A. M. Fiore, Q. B. Li, H. G. Y. Liu, L. J. Mickley, and M. G. Schultz, “Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation,” J. Geophys. Res. 106, 23073–23095 (2001). doi 10.1029/2001JD000807CrossRefGoogle Scholar
  38. 38.
    L. Zhang, D. J. Jacob, N. V. Downey, D. A. Wood, D. Blewitt, C. C. Carouge, A. van Donkelaar, D. B. A. Jones, L. T. Murray, and Y. Wang, “Improved estimate of the policy-relevant background ozone in the United States using the GEOS-Chem global model with 1/2° × 2/3° horizontal resolution over North America,” Atmos. Environ. 45 (37), 6769–6776 (2011).CrossRefGoogle Scholar
  39. 39.
    S.-J. Lin and R. B. Rood, “Multidimensional flux form semi-Lagrangian transport schemes,” Mon. Weather Rev. 124, 2046–2070 (1996).CrossRefGoogle Scholar
  40. 40.
    J.-T. Lin, D. Youn, X. -Z. Liang, and D. J. Wuebbles, “Global model simulation of summertime U.S. ozone diurnal cycle and its sensitivity to PBL mixing, spatial resolution, and emissions,” Atmos. Environ. 42 (36), 8470–8483 (2008).CrossRefGoogle Scholar
  41. 41.
    P. Eller, K. Singh, A. Sandu, K. Bowman, D. K. Henze, and M. Lee, “Implementation and evaluation of an array of chemical solvers in a global chemical transport model,” Geosci. Model Dev. 2, 185–207 (2009).CrossRefGoogle Scholar
  42. 42.
    O. Wild, X. Zhu, and M. J. Prather, “Fast-J: accurate simulation of in- and below-cloud photolysis in tropospheric chemical models,” J. Atmos. Chem. 37, 245–282 (2000).CrossRefGoogle Scholar
  43. 43.
    W. Trivitayanurak, P. Adams, D. Spracklen, and K. Carslaw, “Tropospheric aerosol microphysics simulation with assimilated meteorology: Model description and intermodel comparison,” Atmos. Chem. Phys. 8, 3149–3168 (2008).CrossRefGoogle Scholar
  44. 44.
    J. G. J. Olivier, J. A. Van Aardenne, F. Dentener, V. Pagliari, L. N. Ganzeveld, and J. A. H. W. Peters, “Recent trends in global greenhouse gas emissions: Regional trends 1970–2000 and spatial distribution of key sources in 2000,” Environ. Sci. 2, 81–99 (2005). doi doi 10.1080/15693430500400345CrossRefGoogle Scholar
  45. 45.
    A. B. Guenther, X. Jiang, C. L. Heald, T. Sakulyanontvittaya, T. Duhl, L. K. Emmons, and X. Wang, “The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): An extended and updated framework for modeling biogenic emissions,” Geosci. Model Dev. 5, 1471–1492 (2012). doi 10.5194/gmd-5-1471-2012CrossRefGoogle Scholar
  46. 46.
    G. R. van der Werf, J. T. Randerson, L. Giglio, G. J. Collatz, M. Mu, P. S. Kasibhatla, D. C. Morton, R. S. DeFries, Y. Jin, and T. T. van Leeuwen, “Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009),” Atmos. Chem. Phys. 10, 11707–11735 (2010).CrossRefGoogle Scholar
  47. 47.
    C. S. Potter and S. A. Klooster, “Global model estimates of carbon and nitrogen storage in litter and soil pools: Response to change in vegetation quality and biomass allocation,” Tellus B 49 (1), 1–17 (1997).CrossRefGoogle Scholar
  48. 48.
    A. V. Vivchar, K. B. Moiseenko, and N. V. Pankratova, “Estimates of carbon monoxide emissions from wildfires in Northern Eurasia for air quality assessment and climate modeling,” Izv., Atmos. Ocean. Phys. 46 (3), 281–293 (2010).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • K. B. Moiseenko
    • 1
    Email author
  • Yu. A. Shtabkin
    • 1
  • E. V. Berezina
    • 1
  • A. I. Skorokhod
    • 1
  1. 1.Obukhov Institute of Atmospheric Physics, Russian Academy of SciencesMoscowRussia

Personalised recommendations