Advertisement

Izvestiya, Atmospheric and Oceanic Physics

, Volume 54, Issue 6, pp 616–620 | Cite as

Wind Pulse Effect on Coastal Current

  • G. K. KorotaevEmail author
Article
  • 5 Downloads

Abstract

Shallow water equations have been used to analyze the final stage of the response of a semi-infinite rotating basin to the wind impulse effect simulating the passage of a storm in the presence of a coastal current. It has been shown that the most significant effect upon a high storm intensity is that the coastal stream core shifts several kilometers toward the coast or from the coast, depending on the sign of the Ekman transport. The additional currents arising after the storm passage in the presence of an alongshore stream differ only quantitatively from the currents arising in its absence.

Keywords:

shallow water equations inertial oscillations coastal currents wind impulse 

Notes

REFERENCES

  1. 1.
    A. Gill, Atmosphere–Ocean Dynamics, Vol. 1 (Academic, London, 1982; Mir, Moscow, 1986).Google Scholar
  2. 2.
    M. V. Kalashnik and P. N. Svirkunov, “On the cyclostrophic and geostrophic balance states,” Dokl. Akad. Nauk 344 (2), 233–236 (1995).Google Scholar
  3. 3.
    G. K. Korotaev, “Radiating vortices in geophysical fluid dynamics,” Surv. Geophys. 18, 567–619 (1997).CrossRefGoogle Scholar
  4. 4.
    G. K. Korotaev, “Significance and physics of frontal eddies,” in Oceanic Fronts and Related Phenomena: The II Konstantin Frolov Memorial Symposium (Pushkin–St. Petersburg, 1998), pp. 256–267.Google Scholar
  5. 5.
    G. K. Korotaev, “On the role of angular momentum conservation in the formation and evolution of frontal vortices,” Izv., Atmos. Ocean. Phys. 35 (4), 494–500 (1999).Google Scholar
  6. 6.
    G. K. Korotaev, “Nonlinear adjustment of a heavy rotating fluid to equilibrium,” Phys. Oceanogr. 10 (6), 495–502 (1998).CrossRefGoogle Scholar
  7. 7.
    C. G. Rossby, “On the mutual adjustment of pressure and velocity distribution in certain simple current system II,” J. Mar. Res., No. 2, 239–263 (1938).Google Scholar
  8. 8.
    V. Zeitlin, S. B. Medvedev, and R. Plougonven, “Frontal geostrophic adjustment? Slow manifold and nonlinear wave phenomena in one-dimensional rotating shallow water. Part 1. Theory,” J. Fluid Mech. 481, 269–290 (2003).CrossRefGoogle Scholar
  9. 9.
    G. M. Reznik, V. Zeitlin, and M. Ben Jelloul, “Nonlinear theory of geostrophic adjustment. Part 1. Rotating shallow water,” J. Fluid Mech. 445, 93–120 (2001).CrossRefGoogle Scholar
  10. 10.
    G. M. Reznik, “Geostrophic adjustment with gyroscopic waves: barotropic fluid without the traditional approximation,” J. Fluid Mech. 743, 585–605 (2014). doi 10.1017/jfm.2014.59CrossRefGoogle Scholar
  11. 11.
    G. M. Reznik, “Geostrophic adjustment with gyroscopic waves: Stably neutrally stratified fluid without the traditional approximation,” J. Fluid Mech. 747, 605–634 1017 (2014). doi 10.1017/jfm.2014.166Google Scholar
  12. 12.
    M. V. Kalashnik, “Trapped symmetric disturbances in rotating shear flows,” Izv., Atmos. Ocean. Phys. 44 (6), 787–793 (2008).CrossRefGoogle Scholar
  13. 13.
    A. G. Zatsepin, A. G. Ostrovskii, V. V. Kremenetskiy, V. B. Piotukh, S. B. Kuklev,L. V. Moskalenko, O. I. Podymov, V. I. Baranov, A. O. Korzh, and S. V. Stanichny, “On the nature of short-period oscillations of the main Black Sea pycnocline, submesoscale eddies, and response of the marine environment to the catastrophic shower of 2012,” Izv., Atmos. Ocean. Phys. 49 (6), 659–673 (2013).CrossRefGoogle Scholar
  14. 14.
    A. Kubryakov, G. Korotaev, Yu. Ratner, A. Grigoriev, A. Kordzadze, S. Stefanescu, N. Valchev, and R. Matescu, “The Black Sea nearshore regions forecasting system: Operational implementation,” in Coastal to Global Operational Oceanography: Achievements and Challenges: Proceedings of the Fifth International Conference on EuroGOOS, 2008, 20–22 May, Exeter, UK, Ed. by H. Dahlin, M. J. Bell, N. C. Flemming, and S. E. Petersson (SMHI, Norkoping, Sweden, 2010), pp. 293–296.Google Scholar
  15. 15.
    V. B. Zalesny, N. A. Diansky, V. V. Fomin, S. N. Moshonkin, S. G. Demyshev, “Numerical model of the circulation of the Black Sea and the Sea of Azov,” Russ. J. Numer. Anal. Math. Modell. 27 (1), 95–111 (2012).CrossRefGoogle Scholar
  16. 16.
    V. B. Zalesny, A.V. Gusev, and V. I. Agoshkov, “Modelling of the Black Sea circulation with high resolution of the coastal zone,” Izv., Atmos. Ocean. Phys. 52 (3), 277–293 (2016).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Marine Hydrophysical Institute, Russian Academy of SciencesSevastopolRussia

Personalised recommendations