Izvestiya, Atmospheric and Oceanic Physics

, Volume 54, Issue 6, pp 570–580 | Cite as

Methane Fluxes Into Atmosphere from Fennoskandian Lakes

  • L. L. GolubyatnikovEmail author
  • I. MammarellaEmail author


The experimental data on methane fluxes into the atmosphere from Fennoscandian lakes is analyzed. The contribution made by the lake network of this northern region to the atmospheric methane budget is estimated as 320 ± 23 KtCH4 per year. From 16 to 37% of the annual methane emission from Fennoscandian lakes is carried out by methane produced during the ice cover period. The methane fluxe rate from studied lakes is estimated as 2.6 ± 0.2 gCH4m–2 yr–1. Among lakes of the region, small lakes (area <0.1 km2) are the most intensive sources of atmospheric methane per unit area.


methane fluxes lakes natural zones Fennoskandia 



We thank V.S. Kazantsev for his help in processing information about the lake areas and the personnel at Paanajarvi National Park for their assistance in our field research. This work was supported by the Russian Foundation of Basic Research (project no. 14-05-91764) and by the state assignment.


  1. 1.
    C. Verpoorter, T. Kutser, D. A. Seekell, and L. J. Tranvik, “A global inventory of lakes based on high-resolution satellite imagery,” Geophys. Res. Lett. 41 (1), 6396–6402 (2014).CrossRefGoogle Scholar
  2. 2.
    L. J. Tranvik, J. A. Downing, J. B. Cotner, et al., “Lakes and reservoirs as regulators of carbon cycling and climate,” Limnol. Oceanogr. 54, 2298–2314 (2009).CrossRefGoogle Scholar
  3. 3.
    D. Bastviken, L. J. Tranvik, J. A. Downing, et al., “Freshwater methane emissions offset the continental carbon sink,” Science 331, 50 (2011).CrossRefGoogle Scholar
  4. 4.
    M. Saunois, P. Bousquet, B. Poulter, et al., “The global methane budget 2000–2012,” Earth Syst. Sci. Data 8, 697–751 (2016).CrossRefGoogle Scholar
  5. 5.
    V. F. Gal’chenko, Methanotrophic Bacteria (GEOS, Moscow, 2001) [in Russian].Google Scholar
  6. 6.
    D. Bastviken, J. Cole, M. Pace, and L. Tranvik, “Methane emissions from lakes: dependence of lake characteristics, two regional assessments and a global estimate,” Global Biogeochem. Cycles 18, GB4009 (2004).CrossRefGoogle Scholar
  7. 7.
    P. Rinta, D. Bastviken, J. Schilder, et al., “Higher late summer methane emission from central than northern European lakes,” J. Limnol. 76 (1), 52–67 (2017).Google Scholar
  8. 8.
    S. Natchimuthu, B. Panneer Selvam, and D. Bastviken, “Influence of weather variables on methane and carbon dioxide flux from a shallow pond,” Biogeochemistry 119, 403–413 (2014).CrossRefGoogle Scholar
  9. 9.
    J. T. Huttunen, J. Alm, A. Liikanen, et al., “Fluxes of methane, carbon dioxide and nitrous oxide in boreal lakes and potential anthropogenic effects on the aquatic greenhouse gas emissions,” Chemosphere 52 (3), 609–621 (2003).CrossRefGoogle Scholar
  10. 10.
    I. Bergström, S. Mäkelä, P. Kankaala, and P. Kortelainen, “Methane efflux from littoral vegetation stands of southern boreal lakes: An upscaled, regional estimate,” Atmos. Environ. 41, 339–351 (2007).CrossRefGoogle Scholar
  11. 11.
    P. Kankaala, A. Ojala, and T. Käki, “Temporal and spatial variation in methane emissions from a flooded transgression shore of a boreal lake,” Biogeochemistry 68, 297–311 (2004).CrossRefGoogle Scholar
  12. 12.
    S. Juutinen, J. Alm, T. Larmola, et al., “Major implication of the littoral zone for methane release from boreal lakes,” Global Biogeochem. Cycles 17 (4), 1117 (2003).CrossRefGoogle Scholar
  13. 13.
    P. Kankaala, J. Huotari, E. Peltomaa, et al., “Methanotrophic activity in relation to methane efflux and total heterotrophic bacterial production in a stratified, humic, boreal lake,” Limnol. Oceanogr. 51 (2), 1195–1204 (2006).CrossRefGoogle Scholar
  14. 14.
    C. M. Michmerhuizen, R. G. Striegl, and M. E. McDonald, “Potential methane emission from north-temperate lakes following ice melt,” Limnol. Oceanogr. 41, 985–991 (1996).CrossRefGoogle Scholar
  15. 15.
    J. Karlsson, R. Giesler, J. Persson, and E. Lundin, “High emission of carbon dioxide and methane during ice thaw in high latitude lakes,” Geophys. Res. Lett. 40 (6), 1123–1127 (2013).CrossRefGoogle Scholar
  16. 16.
    J. T. Huttunen, J. Alm, E. Saarijärvi, et al., “Contribution of winter to the annual CH4 emission from a eutrophied boreal lake,” Chemosphere 50, 247–250 (2003).CrossRefGoogle Scholar
  17. 17.
    H. Miettinen, J. Pumpanen, J. J. Heiskanen, et al., “Towards a more comprehensive understanding of lacustrine greenhouse gas dynamics—two-year measurements of concentrations and fluxes of CO2, CH4 and N2O in a typical boreal lake surrounded by managed forests,” Boreal Environ. Res. 20 (1), 75–89 (2015).Google Scholar
  18. 18.
    E. J. Lundin, J. Klaminder, D. Bastviken, et al., “Large difference in carbon emission-burial balances between boreal and Arctic lakes,” Sci. Rep. 5, 14248 (2015).CrossRefGoogle Scholar
  19. 19.
    M. Wik, R. K. Varner, AnthonyK. Walter, et al., “Climate-sensitive northern lakes and ponds are critical components of methane release,” Nature Geosci. 9, 99–105 (2016).CrossRefGoogle Scholar
  20. 20.
    A. Sepulveda-Jauregui, K. M. Walter Anthony, K. Martinez-Cruz, et al., “Methane and carbon dioxide emissions from 40 lakes along a north–south latitudinal transect in Alaska,” Biogeosciences 12, 3197–3223 (2015).CrossRefGoogle Scholar
  21. 21.
    U. Bohn and G. D. Katenina, Map of the Natural Vegetation of Europe (Scale 1 : 2 500 000), Federal Agency for Nature Conservation, Bonn, 2000.Google Scholar
  22. 22.
    A. Henriksen, B. L. Skjelkvale, J. Mannio, et al., “Northern European lake survey – 1995. Finland, Norway, Sweden, Denmark, Russian Kola, Russian Karelia, Scotland and Wales,” Ambio 27 (2), 80–91 (1998).Google Scholar
  23. 23.
    Lakes of Karelia. A Handbook, Ed. by N. N. Filatov and V. I. Kukharev (Karel’skii nauchnyi tsentr RAN, Petrozavodsk, 2013) [in Russian].Google Scholar
  24. 24.
    The Finnish Eurowaternet with Information about Finnish Water Resources and Monitoring Strategies, Ed. by J. Niemi, P. Heinonen, S. Mitikka, (Finnish Environ. Inst., Helsinki, 2001).Google Scholar
  25. 25.
    J. T. Huttunen, T. S. Väisänen, S. K. Hellsten, et al., “Fluxes of CH4, CO2, and N2O in hydroelectric reservoirs Lokka and Porttipahta in the northern boreal zone in Finland,” Global Biogeochem. Cycles 16 (1), 1003 (2002).CrossRefGoogle Scholar
  26. 26.
    L. L. Golubyatnikov and V. S. Kazantsev, “Contribution of tundra lakes in Western Siberia to the atmospheric methane budget,” Izv., Atmos. Ocean. Phys. 49 (4), 395–403 (2013).CrossRefGoogle Scholar
  27. 27.
    J. Karlsson, T. R. Christensen, P. Crill, et al., “Quantifying the relative importance of lake emissions in the carbon budget of a subarctic catchment,” J. Geophys. Res. 115, G03006 (2010).CrossRefGoogle Scholar
  28. 28.
    T. R. Christensen, T. Johansson, M. Olsrud, et al., “A catchment-scale carbon and greenhouse gas budget of a subarctic landscape,” Phil. Trans. R. Soc. A 365, 1643–1656 (2007).CrossRefGoogle Scholar
  29. 29.
    M. Wik, P. M. Crill, R. K. Varner, and D. Bastviken, “Multiyear measurements of ebullitive methane flux from three subarctic lakes,” J. Geophys. Res. 118, 1307–1321 (2013).CrossRefGoogle Scholar
  30. 30.
    E. J. Lundin, R. Giesler, A. Persson, et al., “Integrating carbon emissions from lakes and streams in a subarctic catchment,” J. Geophys. Res. 118, 1200–1207 (2013).CrossRefGoogle Scholar
  31. 31.
    M. Jammet, S. Dengel, E. Kettner, et al., “Year-round CH4 and CO2 flux dynamics in two contrasting freshwater ecosystems of the subarctic,” Biogeosciences 14, 5189–5216 (2017).CrossRefGoogle Scholar
  32. 32.
    M. van Hardenbroek, O. Heiri, F. J. W. Parmentier, et al., “Evidence for past variations in methane availability in a Siberian thermokarst lake based on δ13C of chitinous invertebrate remains,” Quat. Sci. Rev. 66, 74–84 (2013).CrossRefGoogle Scholar
  33. 33.
    M. E. Repo, J. T. Huttunen, A. V. Naumov, et al., “Release of CO2 and CH4 from small wetlands lakes in Western Siberia,” Tellus B 59, 788–796 (2007).CrossRefGoogle Scholar
  34. 34.
    F. Bouchard, I. Laurion, V. Preskienis, et al., “Modern to millennium-old greenhouse gases emitted from ponds and lakes of the Eastern Canadian Arctic (Bylot Island, Nunavut),” Biogeosciences 12, 7279–7298 (2015).CrossRefGoogle Scholar
  35. 35.
    P. Kankaala, J. Huotari, T. Tulonen, and A. Ojala, “Lake-size dependent physical forcing drives carbon dioxide and methane effluxes from lakes in a boreal landscape,” Limnol. Oceanogr. 58 (6), 1915–1930 (2013).CrossRefGoogle Scholar
  36. 36.
    M. van Hardenbroek, A. F. Lotter, D. Bastviken, et al., “Relationship between δ13C of chironomid remains and methane flux in Swedish lakes,” Freshwater Biol. 57, 166–177 (2012).CrossRefGoogle Scholar
  37. 37.
    L. L. Golubyatnikov, “Study of methane emissions from northern lakes in Russia,” in Ecology, Economics, Informatics, System Analysis and Modeling of Economic and Ecological Systems. Collection of Papers (Yuzhnyi federal’nyi universitet, Rostov on Don, 2015), Vol. 1, pp. 95–97.Google Scholar
  38. 38.
    H. E. Chmiel, J. Kokic, B. A. Denfeld, et al., “The role of sediments in the carbon budget of a small boreal lake,” Limnol. Oceanogr. 61, 1814–1825 (2016).CrossRefGoogle Scholar
  39. 39.
    J. Lopéz Bellido, E. Peltomaa, and A. Ojala, “An urban boreal lake basin as a source of CO2 and CH4,” Environ. Pollut. 159, 1649–1659 (2011).CrossRefGoogle Scholar
  40. 40.
    J. T. Huttunen, T. S. Väisänen, M. Heikkinen, et al., “Exchange of CO2, CH4 and N2O between the atmosphere and two northern boreal ponds with catchments dominated by peatlands or forests,” Plant Soil 242, 137–146 (2002).CrossRefGoogle Scholar
  41. 41.
    P. Milberg, L. Törnqvist, L. M. Westerberg, and D. Bastviken, “Temporal variations in methane emissions from emergent aquatic macrophytes in two boreonemoral lakes,” AoB Plants 9, plx029 (2017).CrossRefGoogle Scholar
  42. 42.
    S. Natchimuthu, I. Sundgren, M. Galfalk, et al., “Spatio-temporal variability of lake CH4 fluxes and its influence on annual whole lake emission estimates,” Limnol. Oceanogr. 61, S13–S26 (2016).CrossRefGoogle Scholar
  43. 43.
    J. López Bellido, T. Tulonen, P. Kankaala, and A. Ojala, “CO2 and CH4 fluxes during spring and autumn mixing periods in a boreal lake (Pääjärvi, Southern Finland),” J. Geophys. Res. 114, G04007 (2009).CrossRefGoogle Scholar
  44. 44.
    T. Larmola, J. Alm, S. Juutinen, et al., “Contribution of vegetated littoral zone to winter fluxes of carbon dioxide and methane from boreal lakes,” J. Geophys. Res. 109, D19102 (2004).CrossRefGoogle Scholar
  45. 45.
    C. E. Weyhenmeyer, “Methane emissions from beaver ponds: Rates, patterns, and transport mechanisms,” Global Biogeochem. Cycles 13 (4), 1079–1090 (1999).CrossRefGoogle Scholar
  46. 46.
    A. R. Phelps, K. M. Peterson, and M. O. Jeffries, “Methane efflux from high-latitude lakes during spring ice melt,” J. Geophys. Res. 103, 29029–29036 (1998).CrossRefGoogle Scholar
  47. 47.
    J. Schilder, D. Bastviken, M. van Hardenbroek, et al., “Spatial heterogeneity and lake morphology affect diffusive greenhouse gas emission estimates of lakes,” Geophys. Res. Lett. 40, 5752–5756 (2013).CrossRefGoogle Scholar
  48. 48.
    E. Podgrajsek, E. Sahlée, D. Bastviken, et al., “Comparison of floating chamber and eddy covariance measurements of lake greenhouse gas fluxes,” Biogeosciences 11, 4225–4233 (2014).CrossRefGoogle Scholar
  49. 49.
    T. DelSontro, L. Boutet, A. St-Pierre, et al., “Methane ebullition and diffusion from northern ponds and lakes regulated by the interaction between temperature and system productivity,” Limnol. Oceanogr. 61 (S1), S62–S77 (2016).CrossRefGoogle Scholar
  50. 50.
    M. A. Holgerson and P. A. Raymond, “Large contribution to inland water CO2 and CH4 emissions from very small ponds,” Nature Geosci. 9, 222–228 (2016).CrossRefGoogle Scholar
  51. 51.
    N. N. Filatov, A. P. Georgiev, T. V. Efremova, et al., “Response of lakes in Eastern Fennoscandia and Eastern Antarctica to climate changes,” Dokl. Earth Sci. 444 (2), 752–755 (2012).CrossRefGoogle Scholar
  52. 52.
    S. Bertilsson, A. Burgin, C. C. Carey, et al., “The under-ice microbiome of seasonally frozen lakes,” Limnol. Oceanogr. 58, 1998–2012 (2013).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Obukhov Institute of Atmospheric PhysicsMoscowRussia
  2. 2.Institute for Atmospheric and Earth System Research, University of HelsinkiHelsinkiFinland

Personalised recommendations