Advertisement

Izvestiya, Atmospheric and Oceanic Physics

, Volume 54, Issue 6, pp 621–625 | Cite as

Spatial Structure of the Antarctic Water Flow in the Vema Fracture Zone of the Mid-Atlantic Ridge

  • D. I. Frey
  • E. G. Morozov
  • V. V. Fomin
  • N. A. Diansky
Article
  • 3 Downloads

Abstract—

We study the Antarctic Bottom Water (AABW) flow in the Vema Fracture Zone of the Mid-Atlantic Ridge using the high-resolution Institute of Numerical Mathematics Ocean Model (INMOM) and data from field measurements. The key feature of this numerical modeling is high horizontal and vertical resolution in the bottom layer for the simulation of the flow in the narrow deepwater fracture, as well as the use of high-quality topography based on multibeam echo sounder measurements. Direct CTD and LADCP measurements performed onboard the R/V Akademik Sergey Vavilov in 2006 and 2014–2016 were used to verify the model. In this work, we analyze both the thermohaline structure of the bottom layer in the Vema Fracture Zone and kinematics of the flow over its entire length.

Keywords:

numerical simulation bottom currents Antarctic Bottom Water Vema Fracture Zone CTD and LADCP measurements 

Notes

ACKNOWLEDGMENTS

The work of E.G. Morozov (oceanic measurements) was performed within the state task of the Federal Agency of Scientific Organizations of Russia (theme no. 0149-2014-0008) and supported in part by expedition grant of the Russian Foundation for Basic Research 17-08-00085. The work of D.I. Frey (modeling) was supported by the Russian Science Foundation (grant no. 14-50-00095). The investigations of N.A. Diansky and V.V. Fomin were supported by the Russian Science Foundation (grant no. 17-17-01295).

REFERENCES

  1. 1.
    G. Wüst and A. Defant, Schichtung und Zirkulation des Atlantischen Ozeans, Ser.: Wissenschaftliche Ergebnisse der deutschen atlantischen Expedition auf dem Forschungs- und Vermessungsschiff “Meteor” 1925–1927 (Walter de Gruyter, Berlin, 1936).Google Scholar
  2. 2.
    E. G. Morozov, R. Yu. Tarakanov, and N. I. Makarenko, “Flows of Antarctic bottom water through fractures in the southern part of the North Mid-Atlantic Ridge,” Oceanology (Engl. Transl.) 55 (6), 795–800 (2015).Google Scholar
  3. 3.
    R. Yu. Tarakanov and E. G. Morozov, “Flow of Antarctic bottom water at the output of the Vema Channel,” Oceanology (Engl. Transl.) 55 (2), 153–161 (2015).Google Scholar
  4. 4.
    P. G. Baines and S. Condie, “Observation and modelling of Antarctic downslope flows: A review, in Ocean, Ice, and Atmosphere: Interactions at the Antarctic Continental Margin (Antarctic Res. Series 75), Ed. by S.  S.  Jacobs and R. F. Weiss (Am. Geophys. Union, Washington, D.C., 1998), pp. 29–49. doi 10.1029/ AR075p0029Google Scholar
  5. 5.
    E. G. Morozov, A. N. Demidov, and R. Yu. Tarakanov, “Transport of Antarctic waters in the deep channels of the Atlantic Ocean,” Dokl. Earth Sci. 423 (8), 1286–1289 (2008).CrossRefGoogle Scholar
  6. 6.
    E. G. Morozov, A. N. Demidov, R. Y. Tarakanov, and W. Zenk, Abyssal Channels in the Atlantic Ocean: Water Structure and Flows (Springer, Dordrecht, 2010).CrossRefGoogle Scholar
  7. 7.
    E. G. Morozov, R. Y. Tarakanov, D. I. Frey, T. A. Demidova, N. I. Makarenko, “Bottom water flows in the tropical fractures of the Northern Mid-Atlantic Ridge,” J. Oceanogr. 74 (1) (2018). doi 10.1007/s10872-017-0445-xGoogle Scholar
  8. 8.
    B. C. Heezen, R. D. Gerard, and M. Tharp, “The Vema Fracture Zone in the equatorial Atlantic,” J. Geophys. Res. 69, 733–739 (1964).CrossRefGoogle Scholar
  9. 9.
    A. Vangriesheim, “Antarctic bottom water flow through the Vema Fracture Zone,” Oceanol. Acta 3, 199–207 (1980).Google Scholar
  10. 10.
    M. Rhein, L. Stramma, and G. Krahmann, “The spreading of Antarctic bottom water in the tropical Atlantic,” Deep Sea Res. 45, 507–527 (1998).CrossRefGoogle Scholar
  11. 11.
    A. N. Demidov, S. A. Dobrolyubov, E. G. Morozov, and R. Yu. Tarakanov, “Transport of bottom waters through the Vema Fracture Zone in the Mid-Atlantic ridge,” Dokl. Earth Sci. 416 (1), 1120–1124 (2007).CrossRefGoogle Scholar
  12. 12.
    A. Santoso and M. H. England, “Antarctic bottom water variability in a coupled climate model,” J. Phys. Oceanogr. 38, 1870–1893 (2008).CrossRefGoogle Scholar
  13. 13.
    N. A. Diansky, Modeling of Ocean Circulation and Investigation of Its Response to Short- and Long-Period Atmospheric Forcing (Fizmatlit, Moscow, 2013) [in Russian].Google Scholar
  14. 14.
    N. A. Diansky, A. V. Bagno, and V. B. Zalesny, “Sigma model of global ocean circulation and its sensitivity to variations in wind stress,” Izv., Atmos. Ocean. Phys. 38 (4), 537–556 (2002).Google Scholar
  15. 15.
    D. Brydon, S. San, and R. Bleck, “A new approximation of the equation of state for seawater, suitable for numerical ocean models,” J. Geophys. Res. 104 (C1), 1537–1540 (1999).CrossRefGoogle Scholar
  16. 16.
    S. Griffies, A. Gnanadesikan, K. W. Dixon, J. Dunne, R. Gerdes, M. J. Harrison, A. Rosati, J. L. Russell, B. L. Samuels, M. J. Spelman, M. Winton, and R. Zhang, “Formulation of an ocean model for global climate simulations,” Ocean Sci. 1, 45–79 (2005).CrossRefGoogle Scholar
  17. 17.
    G. I. Marchuk, A. S. Rusakov, V. B. Zalesny, and N. A. Diansky, “Splitting numerical technique with application to the high resolution simulation of the Indian ocean circulation,” Pure Appl. Geophys. 162, 1407–1429 (2005).CrossRefGoogle Scholar
  18. 18.
    V. B. Zalesny and V. O. Ivchenko, “Simulating large-scale circulation in seas and oceans,” Izv., Atmos. Ocean. Phys. 51 (3), 259–271 (2015)CrossRefGoogle Scholar
  19. 19.
    M. V. Anisimov and N. A. Diansky, “Physical mechanism of the westward drift of the frontal current rings in the ocean,” Oceanology (Engl. Transl.) 48 (3), 299–305 (2008).Google Scholar
  20. 20.
    N. A. Diansky, V. V. Fomin, N. V. Zhokhova, and A. N.  Korshenko, “Simulations of currents and pollution transport in the coastal waters of Big Sochi,” Izv., Atmos. Ocean. Phys. 49 (6), 611–621 (2013).CrossRefGoogle Scholar
  21. 21.
    V. B. Zalesny, A. V. Gusev, and V. V. Fomin, “Numerical model of nonhydrostatic ocean dynamics based on methods of artificial compressibility and multicomponent splitting,” Oceanology (Engl. Transl.) 56 (6), 876–887 (2016).Google Scholar
  22. 22.
    W. B. F. Ryan, S. Carbotte, J. O. Coplan, S. O’Hara, A. Melkonian, R. Arko, R. A. Weissel, V. Ferrini, A. Goodwillie, F. Nitsche, J. Bonczkowski, and R. Zem, “Global multi-resolution topography synthesis,” Geochem. Geophys. Geosyst. 10, Q03014 (2009). doi 10.1029/2008GC002332CrossRefGoogle Scholar
  23. 23.
    R. A. Locarnini, A. V. Mishonov, J. I. Antonov, et al., World Ocean Atlas 2009, Vol. 1: Temperature (U.S. Government Printing Office, Washington, D.C., 2010).Google Scholar
  24. 24.
    Sea-Bird Electronics, SBE 19plus SeaCAT Profiles CTD User Manual, Release Date 08/27/2016. http://www.seabird.com/.Google Scholar
  25. 25.
    M. Visbeck, “Deep velocity profiling using lowered acoustic Doppler current profiler: Bottom track and inverse solution,” J. Atmos. Oceanic Technol. 19 (5), 794–807 (2002).CrossRefGoogle Scholar
  26. 26.
    World Ocean Database Geographically Sorted Data, WOD13 (2013). http://www.nodc.noaa.gov/OC5/ WOD/datageo.html.Google Scholar
  27. 27.
    A. S. Sarkisyan and J. E. Sündermann, Modelling Ocean Climate Variability (Springer, Berlin, 2009).CrossRefGoogle Scholar
  28. 28.
    Yu. L. Demin, R. A. Ibrayev, and A. S. Sarkisyan, Calibration of climate circulation and reproduction models, Izv. Akad. Nauk SSSR: Fiz. Atmos. Okeana 27 (10), 1054–1067 (1991).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • D. I. Frey
    • 1
  • E. G. Morozov
    • 1
  • V. V. Fomin
    • 2
  • N. A. Diansky
    • 2
    • 3
    • 4
  1. 1.Shirshov Institute of Oceanology, Russian Academy of SciencesMoscowRussia
  2. 2.Zubov State Oceanographic InstituteMoscowRussia
  3. 3.Institute of Numerical Mathematics, Russian Academy of SciencesMoscowRussia
  4. 4.Moscow State UniversityMoscowRussia

Personalised recommendations