Advertisement

Izvestiya, Atmospheric and Oceanic Physics

, Volume 54, Issue 6, pp 558–569 | Cite as

A Study of the Column Methane Short-Term Variability in the Atmosphere on a Regional Scale

  • M. V. CherepovaEmail author
  • S. P. Smyshlyaev
  • M. V. MakarovaEmail author
  • Yu. M. Timofeyev
  • A. V. Poberovskiy
  • G. M. Shved
Article
  • 7 Downloads

Abstract

The short-term variability of the methane column has been analyzed based on ground-based observations and numerical modeling at the St. Petersburg NDACC station for 2009–2016. The methane variability for different atmospheric altitude layers is presented. Short-term methane variability is found to be significant compared to long-term trends. The results of numerical experiments with the global chemistry-transport model of the troposphere and stratosphere demonstrate that short-term methane variability is basically defined by methane concentration changes between an altitude of 5 km and 20 km.

Keywords:

column methane observation results short-term variability numerical modeling global chemistry-transport model of the troposphere and stratosphere 

Notes

ACKNOWLEDGMENTS

The analysis of the measurement and modeling results was performed as part of project no. 14-17-00096 of the Russian Scientific Foundation. The influence of arctic sources of methane was estimated as part of the project no. 17-05-01277-а of the Russian Foundation for Basic Research. The global model of the gas composition of the atmosphere is developed within the state assignment of the Ministry of Education and Science of the Russian Federation (project no. 5.6493.2017/8.9).

REFERENCES

  1. 1.
    S. P. Smyshlyaev, E. A. Mareev, V. Ya. Galin, and P. A. Blakitnaya, “Modeling the influence of methane emissions from Arctic gas hydrates on regional variations in composition of the lower atmosphere,” Izv., Atmos. Ocean. Phys. 51 (4), 412–422 (2015).CrossRefGoogle Scholar
  2. 2.
    E. D. Hausman and M. B. McElroy, “Role of sea-surface temperature and ocean circulation changes in the reorganization of the global carbon cycle at the last glacial termination,” Global Biogeochem. Cycles 13 (2), 371–381 (1999).CrossRefGoogle Scholar
  3. 3.
    A. A. Kiselev and I. L. Karol, “Modeling of the long-term tropospheric trends of hydroxyl radical for the Northern Hemisphere,” Atmos. Environ. 34 (29–30), 5271–5282 (2000).CrossRefGoogle Scholar
  4. 4.
    A. A. Kiselev and I. L. Karol, “The ratio between nitrogen oxides and carbon monoxide total emissions as precursors of tropospheric hydroxyl content evolution,” Atmos. Environ. 36 (39–40), 5971–5981 (2002).CrossRefGoogle Scholar
  5. 5.
    I. L. Karol and A. A. Kiselev, “Atmospheric methane and global climate,” Priroda No. 7, 47–52 (2004).Google Scholar
  6. 6.
    E. J. Dlugokencky, L. P. Steele, P. M. Lang, and K. A. Masarie, “The growth-rate and distribution of atmospheric methane,” J. Geophys. Res.: Atmos. 99, 17021–17043 (1994).CrossRefGoogle Scholar
  7. 7.
    M. V. Makarova, O. Kirner, Yu. M. Timofeev, et al., “Analysis of methane total column variations in the atmosphere near St. Petersburg using ground-based measurements and simulations,” Izv., Atmos. Ocean. Phys. 51 (2), 177–185 (2015).CrossRefGoogle Scholar
  8. 8.
    M. V. Makarova, O. Kirner, Yu. M. Timofeev, A. V. Poberovskii, Kh. Kh. Imkhasin, S. I. Osipov, and B. K. Makarov, “Annual cycle and long-term trend of the methane total column in the atmosphere over the St. Petersburg region,” Atmos. Ocean. Phys. 51 (4), 431–438 (2015).CrossRefGoogle Scholar
  9. 9.
    L. N. Yurganov, I. Leifer, and C. Lund Myhre, “Seasonal and interannual variability of atmospheric methane over Arctic Ocean from satellite data,” Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa 13 (2), 107–119 (2016).CrossRefGoogle Scholar
  10. 10.
    O. A. Anisimov and V. A. Kokorev, “Comparative analysis of land, marine, and satellite observations of methane in the lower Atmosphere in the Russian Arctic under conditions of climate change,” Izv., Atmos. Ocean. Phys. 51 (9), 979–991 (2015).CrossRefGoogle Scholar
  11. 11.
    R. Sussmann, F. Forster, M. Rettinger, and N. Jones, “Strategy for high accuracy and precision retrieval of atmospheric methane from the mid infrared FTIR network,” Atmos. Meas. Tech. 4, 1943–1964 (2011). doi 10.5194/amt-4-1943-2011CrossRefGoogle Scholar
  12. 12.
    E. Sepúlveda, M. Schneider, F. Hase, et al., “Long term validation of tropospheric column averaged CH4 mole fractions obtained by mid infrared ground based FTIR spectrometry,” Atmos. Meas. Tech. 5, 1425–1441 (2012). doi 10.5194/amt-5-1425-2012CrossRefGoogle Scholar
  13. 13.
    A. S. Ginzburg, A. A. Vinogradova, and E. I. Fedorova, “Some features of seasonal variations in the methane content in the atmosphere over Northern Eurasia,” Izv., Atmos. Ocean. Phys. 47 (1), 45–58 (2011).CrossRefGoogle Scholar
  14. 14.
    E. J. Dlugokencky, S. Houweling, L. Bruhwiler, et al., “Atmospheric methane levels off: Temporary pause or a new steady state?,” Geophys. Res. Lett. 30, 1992–1995 (2003). doi 10.1029/2003GL018126CrossRefGoogle Scholar
  15. 15.
    R. Sussmann, F. Forster, M. Rettinger, and P. Bousquet, “Renewed methane increase for five years (2007–2011) observed by solar FTIR spectrometry,” Atmos. Chem. Phys 12, 4885–4891 (2012). doi 10.5194/acp-12-4885-2012CrossRefGoogle Scholar
  16. 16.
    J. Angelbratt, J. Mellqvist, T. Blumenstock, T. Borsdorff, S. Brohede, P. Duchatelet, F. Forster, F. Hase, E. Mahieu, D. Murtagh, A. K. Petersen, M. Schneider, R. Sussmann, and J. Urban, “A new method to detect long term trends of methane (CH4) and nitrous oxide (N2O) total columns measured within the NDACC ground-based high resolution solar FTIR network,” Atmos. Chem. Phys. 11, 6167–6183 (2011). doi 10.5194/acp-11-6167-2011CrossRefGoogle Scholar
  17. 17.
    M. Rigby, R. G. Prinn, P. J. Fraser, et al., “Renewed growth of atmospheric methane,” Geophys. Res. Lett. 35, L228005 (2008). doi 10.1029/2008GL036037Google Scholar
  18. 18.
    D. K. Arabadzhyan, N. N. Paramonova, M. V. Makarova, and A. V. Poberovskii, “Analysis of temporal variability of methane concentration in the atmosphere using ground-based observations,” Vestn. S.-Peterb. Univ., Ser. 4: Fiz., Khim. 2 (3), 204–215 (2015).Google Scholar
  19. 19.
    F. Hase, T. Blumenstock, and C. Paton-Walsh, “Analysis of the instrumental line shape of high resolution Fourier transform IR spectrometers with gas cell measurements and new retrieval software,” Appl. Opt. 38 (15), 3417–3422 (1999).CrossRefGoogle Scholar
  20. 20.
    F. Hase, J. W. Hannigan, M. T. Coffey, et al., “Intercomparison of retrieval codes used for the analysis of high-resolution ground-based FTIR measurements,” J. Quant. Spectrosc. Radiat. Transfer 87, 25–52 (2004).CrossRefGoogle Scholar
  21. 21.
    Upper air sounding. http://weather.uwyo.edu/upperair/ sounding.html.Google Scholar
  22. 22.
    D. K. Arabadzhyan, N. N. Paramonova, M. V. Makarova, and A. V. Poberovskii, “Analysis of temporal variability of methane concentration in the atmosphere using ground-based observations,” Vestn. S.-Peterb. Univ., Ser. 4: Fiz., Khim. 2 (3), 204–215 (2015).Google Scholar
  23. 23.
    V. Ya. Galin, S. P. Smyshlyaev, and E. M. Volodin, “Combined chemistry-climate model of the atmosphere,” Izv., Atmos. Ocean. Phys. 43 (4), 399–412 (2007).CrossRefGoogle Scholar
  24. 24.
    https://www.ecmwf.int/en/research/climate-reanalysis/ era-interim.Google Scholar
  25. 25.
    V. L. Dvortsov, S. G. Zvenigorodsky, and S. P. Smyshlyaev, “On the use of Isaksen–Luther method of computing photodissociation rates in photochemical models,” J. Geophys. Res. 104 (D21), 26401–26417 (1999). doi 10.1029/1999JD900820CrossRefGoogle Scholar
  26. 26.
    A. W. DeWolfe, A. Wilson, D. M. Lindholm, C. K. Pankratz, M. A. Snow, and T. N. Woods, “Solar irradiance data products at the LASP Interactive Solar IRradiance Data Center (LISIRD),” in American Geophysical Union Fall Meeting, 2010, GC21B-0881.Google Scholar
  27. 27.
    S. P. Smyshlyaev, V. Ya. Galin, P. A. Blakitnaya, and A. K. Lemishchenko, “Analysis of the sensitivity of the composition and temperature of the stratosphere to the variability of spectral solar radiation fluxes induced by the 11-year cycle of solar activity,” Izv., Atmos. Ocean. Phys. 52 (1), 16–32 (2016).CrossRefGoogle Scholar
  28. 28.
    I. Fung, J. John, J. Lerner, E. Matthews, M. Prather, L. P. Steele, P. J. Fraser, “Three-dimensional model synthesis of the global methane cycle,” J. Geophys. Res. 96, 13033–13065 (1991).CrossRefGoogle Scholar
  29. 29.
    G. Janssens-Maenhout, F. Dentener, J. Van Aardenne, S. Monni, V. Pagliari, L. Orlandini, Z. Klimont, J. Kurokawa, H. Akimoto, T. Ohara, R. Wankmueller, B. Battye, D. Grano, A. Zuber, and T. Keating, EDGAR-HTAP: A Harmonized Gridded Air Pollution Emission Dataset Based on National Inventories (European Commission Publications Office, Ispra (Italy), 2012), JRC Rep. 68434.Google Scholar
  30. 30.
    WMO (World Meteorological Organization), Scientific Assessment of Ozone Depletion: 2010, Global Ozone Research and Monitoring Project, Rep. No. 52, Geneva: 2011.Google Scholar
  31. 31.
    SCIAMACHY. https://earth.esa.int/instruments/sciamachy/.Google Scholar
  32. 32.
    http://www.gosat.nies.go.jp/index_e.html.Google Scholar
  33. 33.
    TCCON: https://tccon_wiki.caltech.edu/.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • M. V. Cherepova
    • 1
    Email author
  • S. P. Smyshlyaev
    • 1
  • M. V. Makarova
    • 2
    Email author
  • Yu. M. Timofeyev
    • 2
  • A. V. Poberovskiy
    • 2
  • G. M. Shved
    • 2
  1. 1.Russian State Hydrometeorological UniversitySt. PetersburgRussia
  2. 2.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations