Skip to main content
Log in

Subband Modeling of the Human Cardiovascular System: New Insights into Cardiovascular Regulation

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

We present a new approach to cardiovascular analysis based on a well-known signal processing technique, namely, the frequency subband decomposition. The subbands are chosen in accordance with physiological standards: (1) 0–0.04 Hz, (2) 0.04–0.15 Hz, (3) 0.15–0.4 Hz. It is shown that such a pre-processing drastically improves the accuracy of the analysis and introduces a new direction in the understanding of the relationships between cardiovascular signals. © 1998 Biomedical Engineering Society.

PAC98: 8710+e

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Akay, M. Wavelets in biomedical engineering. Ann. Biomed. Eng. 23:531-542, 1995.

    Google Scholar 

  2. Aldroubi, A., and M. Unser. Wavelets in Medicine and Biology. Boca Raton, FL: CRC, 1996.

    Google Scholar 

  3. Appel, M., J. Saul, R. Berger, and R. Cohen. Closed-loop identification of cardiovascular regulatory mechanisms. Comput. Cardiol. 16:3-8, 1990.

    Google Scholar 

  4. Basar, E., and T. Bullock. Induced Rhythms in the Brain. Boston: Birkhäuser, 1992.

    Google Scholar 

  5. Baselli, G., S. Cerutti, S. Civardi, A. Malliani, and M. Pagani. Cardiovascular variability signals: Towards the identification of a closed-loop model of the neural control mechanisms. IEEE Trans. Biomed. Eng. 35:1033-1045, 1988.

    Google Scholar 

  6. Bernardi, L., et al. Respiratory sinus arrhythmia in the denervated human heart. J. Appl. Physiol. 67:1447-1455, 1989.

    Google Scholar 

  7. Bernardi, L., S. Leuzzi, A. Radaelli, C. Passino, J. Johnston, and P. Sleight. Low-frequency spontaneous fluctuations of RR interval and blood pressure in conscious humans—A baroreceptor or central phenomenon? Clin. Sci. 87:649-654, 1994.

    Google Scholar 

  8. Boer, R. D., J. Karemaker, and J. Strackee. Hemodynamic fluctuations and baroreflex sensitivity in human: A beat-tobeat model. Am. J. Physiol. (Heart Circ. Physiol., 22) 253:680-689, 1987.

    Google Scholar 

  9. Celka, P., R. Vetter, U. Scherrer, and E. Pruvot. Closed loop heart beat interval modelization in humans using mean blood pressure, instantaneous lung volume and muscle sympathetic nerve activity. In: IEEE Annual International Conference of Engineering in Medicine and Biological Society (EMBS), Amsterdam, 1996.

  10. Celka, P., R. Vetter, U. Scherrer, E. Pruvot, and M. Karrakchou. Analysis of the relationship between muscle sympathetic nerve activity and blood pressure in humans using linear and nonlinear modelization. Med. Biol. Eng. Comp. 34:425-426, 1996.

    Google Scholar 

  11. Celka, P., R. Vetter, U. Scherrer, E. Pruvot, and M. Karrakchou. Analysis of the relationship between muscle sympathetic nerve activity and blood pressure signals using subband multi-input modeling. J. Biomed. Eng. 8:518-528, 1996.

    Google Scholar 

  12. Chon, K., T. Mullen, and R. Cohen. A dual-input nonlinear system analysis of autonomic modulation of heart rate. IEEE Trans. Biomed. Eng. 43:530-544, 1996.

    Google Scholar 

  13. Daubechies, I. The wavelet transform, time-frequency localization and signal analysis. IEEE Trans. Inf. Theory 36:961- 1005, 1990.

    Google Scholar 

  14. Eckberg, D., C. Nerhed, and B. Wallin. Respiratory modulation of muscle sympathetic and vagal cardiac outflow in man. J. Physiol. (London) 365:181-196, 1985.

    Google Scholar 

  15. Grueter, R., J.-M. Vesin, E. Pruvot, C. Seydoux, and M. Fromer. Linearity assessment of heart rate time series. In: Proceedings of EMBS, Amsterdam, 1996.

  16. Haselton, J., and P. Guyenet. Central respiratory modulation of medullary sympathoexcitatory neurons in rat. Am. J. Physiol. 256:R739-R750, 1989.

    Google Scholar 

  17. Haykin, S. Adaptive Filter Theory. Englewood Cliffs, NJ: Prentice-Hall, 1991.

    Google Scholar 

  18. Hyndman, B., R. Kitney, and B. Sayers. Spontaneous rhythms in physiological control systems. Nature (London) 233:339-341, 1971.

    Google Scholar 

  19. Kitney, R. A nonlinear model for studying oscillations in the blood pressure control system. J. Biomed. Eng. 1:89-99, 1979.

    Google Scholar 

  20. Korenberg, M., and I. Hunter. The identification of nonlinear biological systems-Volterra kernel approaches. Ann. Biomed. Eng. 24:250-268, 1996.

    Google Scholar 

  21. Kunimoto, M., K. Kirnö, M. Elamv, T. Karlsson, and B. Wallin. Non-linearity of skin resistance response to intraneural electrical stimulation of sudomotor nerves. Acta Physiol. Scand. 146:385-392, 1992.

    Google Scholar 

  22. Malliani, A., M. Pagani, F. Lombardi, and S. Cerutti. Cardiovascular neural regulation explored in the frequency domain. Circulation 84:482-492, 1991.

    Google Scholar 

  23. Perrott, M., and R. Cohen. An efficient approach to ARMA modeling of biological systems with multiple inputs and delays. IEEE Trans. Biomed. Eng. 43:1-14, 1996.

    Google Scholar 

  24. Piepoli, M., P. Sleight, S. Leuzzi, F. Valle, G. Spadacini, C. Passino, J. Johnston, and L. Bernardi. Origin of respiratory sinus arrhythmia in conscious humans. Circulation 95:1813- 1821, 1997.

    Google Scholar 

  25. Saul, J., R. Berger, P Albrecht, S. Stein, M. Chen, and R. Cohen. Transfer function analysis of the circulation: unique insight into cardiovascular regulation. Am. J. Physiol. 261:H1231-H1245, 1991.

    Google Scholar 

  26. Saul, J., D. Kaplan, and R. Kitney. Nonlinear interactions between respiration and heart rate: A phenomenon common to multiple physiologic states. Comp. Cardiol. 15:12-23, 1988.

    Google Scholar 

  27. Sleight, P., M. Larovere, A. Mortara, G. Pinna, R. Maestri, S. Leuzi, B. Bianchini, L. Tavazzi, and L. Bernard. Physiology and pathophysiology of heart-rate and blood-pressure variability in humans-is power spectral-analysis largely and index of baroreflex gain? Clin. Sci. 88:103-109, 1995.

    Google Scholar 

  28. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology, Heart rate variability—standards of measurement, physiological interpretation, and clinical use. Circulation 93:1043- 1063, 1996.

    Google Scholar 

  29. Taylor, J., and D. Eckberg. Fundamental relations between short-term RR interval and arterial pressure oscillations in humans. Circulation 93:1527-1532, 1996.

    Google Scholar 

  30. Toska, K., and M. Eriksen. Respiration-synchronous fluctuations in stroke volume, heart rate and arterial pressure in humans. J. Physiol. (London) 472:501-512, 1993.

    Google Scholar 

  31. Triedman, J., M. Perrott, R. Cohen, and J. Saul. Respiratory sinus arrhythmia: time domain characterization using autoregressive moving average analysis. Am. J. Physiol. (Heart Circ. Physiol. 37) 268:H2232-H2238, 1995.

    Google Scholar 

  32. Widrow, B., and S. Stearns. Adaptive Signal Processing. Englewood Cliffs, NJ: Prentice-Hall, 1985.

    Google Scholar 

  33. Yana, K., J. Saul, R. Berger, M. Perrott, and R. Cohen. A time domain approach for the fluctuation analysis of heart rate related to instantaneous lung volume. IEEE Trans. Biomed. Eng. 40:74-81, 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vetter, R., Celka, P., Vesin, J.M. et al. Subband Modeling of the Human Cardiovascular System: New Insights into Cardiovascular Regulation. Annals of Biomedical Engineering 26, 293–307 (1998). https://doi.org/10.1114/1.57

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.57

Navigation