Skip to main content
Log in

A Stochastic Nonlinear Autoregressive Algorithm Reflects Nonlinear Dynamics of Heart-Rate Fluctuations

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Current methods for detecting nonlinear determinism in a time series require long and stationary data records, as most of them assume that the observed dynamics arise only from the internal, deterministic workings of the system, and the stochastic portion of the signal (the noise component) is assumed to be negligible. To explicitly account for the stochastic portion of the data we recently developed a method based on a stochastic nonlinear autoregressive (SNAR) algorithm. The method iteratively estimates nonlinear autoregressive models for both the deterministic and stochastic portions of the signal. Subsequently, the Lyapunov exponents (LE) are calculated for the estimated models in order to examine if nonlinear determinism is present in the deterministic portion of the fitted model. To determine if nonlinear dynamic analysis of heart-rate fluctuations can be used to assess arrhythmia susceptibility by predicting the outcome of invasive cardiac electrophysiologic study (EPS), we applied the SNAR algorithm to noninvasively measured resting sinus-rhythm heart-rate signals obtained from 16 patients. Our analysis revealed that a positive LE was highly correlated to a patient with a positive outcome of EPS. We found that the statistical accuracy of the SNAR algorithm in predicting the outcome of EPS was 88% (sensitivity=100%, specificity=75%, positive predictive value=80%, negative predictive value=100%, p=0.0019). Our results suggest that the SNAR algorithm may serve as a noninvasive probe for screening high-risk populations for malignant cardiac arrhythmias. © 2002 Biomedical Engineering Society.

PAC2002: 8719Hh, 0545Tp, 8710+e

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Abarbanel, H. D. I. Analysis of Observed Data. New York: Springer, 1996.

    Google Scholar 

  2. Adamson, P. B., M. H. Huang, E. Vanoli, R. D. Foreman, P. J. Schwartz, and S. S. Hull. Unexpected interaction between adrenergic blockade and heart-rate variability before and after myocardial infarction. A longitudinal study in dogs at high and low risk for sudden death. Circulation 90:976–982, 1994.

    Google Scholar 

  3. Aguirre, L. A., and S. A. Billings. Identification of models for chaotic systems from noisy data: Implications for performance and nonlinear filtering. Physica D 85:239–258, 1995.

    Google Scholar 

  4. Barahona, M., and C. S. Poon. Detection of nonlinear dynamics in short, noisy time series. Nature (London) 381:215–217, 1996.

    Google Scholar 

  5. Berger, R. D., S. Akselrod, D. Gordon, and R. J. Cohen. An efficient algorithm for spectral analysis of heart-rate variability. IEEE Trans. Biomed. Eng. 33:900–904, 1986.

    Google Scholar 

  6. Bigger, J. T., J. L. Fleiss, R. C. Steinman, L. M. Rolnitzky, R. E. Kleiger, and J. N. Rottman. Frequency-domain measures of heart period variability after myocardial infarction. Circulation 85:164–171, 1992.

    Google Scholar 

  7. Bigger, Jr., J. T., L. R. Rolnitzky, R. C. Steinman, and J. L. Fleiss. Predicitng mortality after myocardial infarction from the response of RR variability to antiarrhythmic drug therapy. J. Am. Coll. Cardiol. 23:733–740, 1994.

    Google Scholar 

  8. Chon, K. H., K. P. Yip, B. M. Camino, D. J. Marsh, and N. H. Holstein-Rathlou. Modeling nonlinear determinism in short time series from noise driven discrete and continuous systems. Int. J. Bifurcation Chaos Appl. Sci. Eng. 10:2745–2766, 2000.

    Google Scholar 

  9. Chon, K. H., J. K. Kanters, R. J. Cohen, and N. H. Holstein-Rathlou. Detection of chaotic determinism in time series from randomly forced maps. Physica D 99:471–486, 1997.

    Google Scholar 

  10. Chon, K. H., M. J. Korenberg, and N. H. Holstein-Rathlou. Application of fast orthogonal search to linear and nonlinear stochastic systems. Ann. Biomed. Eng. 25:793–801, 1994.

    Google Scholar 

  11. Eckman, J. P., S. O. Kamphorst, D. Ruelle, and S. Ciliberto. Lyapunov exponents from time series. Phys. Rev. A 34:4971–4979, 1985.

    Google Scholar 

  12. Faber, T. S., A. Staunton, K. Hvatkova, A. J. Camm, and M. Malik. Stepwise strategy of using short-and long-term heartrate variability for risk stratification after myocardial infarction. PACE 19:1845–1851, 1996.

    Google Scholar 

  13. Garfinkel, A., P. S. Chen, D. O. Walter, H. S. Karagueuzian, B. Kogan, S. J. Evans, M. Karpoukhin, C. Hwang, T. Uchida, M. Gotoh, O. Nwasokwa, P. Sager, and J. N. Weiss. Quasiperiodicity and chaos in cardiac fibrillation. J. Clin. Invest. 99:156–157, 1997.

    Google Scholar 

  14. Geist, K., U. Parlitz, and W. Lauterborn. Comparison of different methods for computing Lyapunov exponents. Prog. Theor. Phys. 83:875–893, 1990.

    Google Scholar 

  15. Grassberger, P., and I. Procaccia, Measuring the strangeness of strange attractors. Physica D 9:183–208, 1983.

    Google Scholar 

  16. Huikuri, N. V., T. H. Mäkikallio, C.-K. Peng, A. L. Goldberger, U. Hintze, and M. Møller. For the DIAMOND study group. Fractal correlation properties of RR interval dynamics and mortality in patients with depressed left ventricular function after an acute myocardial infarction. Circulation 101:47–53, 2000.

    Google Scholar 

  17. Huikuri, H. V., J. O. Valkama, K. E. J. Airaksinen, T. Seppanen, K. M. Kessler, J. T. Takkunen, and R. J. Myerburg. Frequency domain measures of heart-rate variability before the onset of nonsustained and sustained ventricular tachycardia in patients with coronary artery disease. Circulation 87:1220–1228, 1993.

    Google Scholar 

  18. Huikuri, H. V., K. E. J. Mäkikallio, J. Airaksinen, T. Seppänen, P. Puukka, I. J. Räihä, and L. B. Sourander. Powerlaw relationship of heart-rate variability as a predictor of mortality in the elderly. Circulation 97:2031–2036, 1998.

    Google Scholar 

  19. Kanters, J. K., M. V. Høgaard, E. Agner, and N. H. Holstein-Rathlou. Short-and long-term variations in nonlinear dynamics of heart-rate varibility. Cardiovasc. Res. 31:400–409, 1996.

    Google Scholar 

  20. Kanters, J. K., N. H. Holstein-Rathlou, and E. Agner. Lack of evidence for low-dimensional chaos in heart-rate variability. J. Cardiovasc. Electrophysiol. 5:591–601, 1994.

    Google Scholar 

  21. Kleiger, R. E., J. P. Miller, J. T. Bigger, and A. J. Moss, and the Multicenter Post-Infarction Research Group. Decreased heart-rate variability and its association with increased mortality after acute myocardial infarction. Am. J. Cardiol. 59:256–282, 1987.

    Google Scholar 

  22. Korenberg, M. J. A robust orthogonal algorithm for system identification and time series analysis. Biol. Cybern. 60:267–276, 1989.

    Google Scholar 

  23. Korenberg, M. J., S. A. Billings, Y. P. Li, and P. J. McIlroy. Orthogonal parameter estimation algorithm for nonlinear stochastic systems. Int. J. Control 48:193–210, 1988.

    Google Scholar 

  24. Malik, M., R. Xia, O. Odemuyiwa, A. Staunton, J. Poloniecki, and A. J. Camm. Influence of the recognition artifact in the autonomic analysis of long-tern electrocardiograms on time-domain measurement of heart-rate variability. Med. Biol. Eng. Comput. 31:539–544, 1993.

    Google Scholar 

  25. Manolis, A. S., and N. A. M. Estes III. Value of programmed ventricular stimulation and management of patients with nonsustained ventricular tachycardia associated with coronary artery disease. Am. J. Cardiol. 65:201–205, 1990.

    Google Scholar 

  26. Poon, C. S., and C. K. Merrill. Decrease of cardiac chaos in cogestive heart failure. Nature (London) 389:492–495, 1997.

    Google Scholar 

  27. Sands, K. E., M. L. Appel, L. S. Lilly, F. J. Schoen, G. H. J. Mudge, and R. J. Cohen. Power spectrum analysis of heartrate variability in human cardiac transplant recipients. Circulation 79:76–82, 1989.

    Google Scholar 

  28. Schmidt, G., and G.E. Monfill. Nonlinear methods for heartrate variability assessment, edited by M. Malik, A. J. Camm. Heart-rate Variability, Armonk, NY: Futura, 1995, pp. 87–98.

    Google Scholar 

  29. Shusterman, V., B. Aysin, V. Gottipaty, R. Weiss, S. Brode, D. Schwartzman, and K. P. Anderson. Autonomic nervous system activity and the spontaneous initiation of ventricular tachycardia. ESVEM Investigators. Electrophysiologic study versus electrocardiographic monitoring trial. J. Am. Coll. Cardiol. 32:1891–1899, 1998.

    Google Scholar 

  30. Skinner, J. E., C. M. Pratt, and T. Vybiral. A reduction in the correlation dimension of heart beat intervals precedes imminent ventricular fibrillation in human subjects. Am. Heart J. 125:731–743, 1993.

    Google Scholar 

  31. Smith, J. M., E. A. Clancy, C. R. Valeri, J. N. Ruskin, and R. J. Cohen. Electrical alternans and cardiac electrical instability. Circulation 77:110–121, 1988.

    Google Scholar 

  32. Smith, L. A. Intrinsic limits on dimension calculations. Phys. Lett. A 133:283–288, 1988.

    Google Scholar 

  33. Sugihara, G., Ó Allan, D. Sobel, and K. D. Allan. Nonlinear control of heart-rate variability in human infants. Proc. Natl. Acad. Sci. U.S.A. 93:2608–2613, 1996.

    Google Scholar 

  34. Theiler, J., S. Eubank, A. Lontin, B. Galdrikian, and J. D. Farmer. Testing for nonlinearity in time series: The method of surrogate data. Physica D 58:77–94, 1992.

    Google Scholar 

  35. Turitto, G., E. Caref, G. Macina, J. M. Fontaine, S. N. Ursell, and N. El-Sherif. Time course of ventricular arrhythmias and the signal averaged electrocardiogram in the postinfarction period: A prospective study of correlation. Br. Heart J. 60:17–22, 1988.

    Google Scholar 

  36. Yunus, V., A. M. Gillis, H. J. Duff, D. G. Wyse, and L. B. Mitchell. Increased precordial QTc dispersion predicts ventricular fibrillation during acute myocardial infarction. Am. J. Cardiol. 78:706–708, 1996.

    Google Scholar 

  37. Wolf, A., J. B. Swift, H. L. Swinney, and J. A. Vastano. Determining Lyapunov exponents from a time series. Physica D 16:285–317, 1985.

    Google Scholar 

  38. Wolf, M. M., G. A. Vargios, D. Hunt, and J. G. Sloman. Sinus arrhythmia in acute myocardial infarction. Med. J. Aust. 2:52–53, 1978.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Armoundas, A.A., Ju, K., Iyengar, N. et al. A Stochastic Nonlinear Autoregressive Algorithm Reflects Nonlinear Dynamics of Heart-Rate Fluctuations. Annals of Biomedical Engineering 30, 192–201 (2002). https://doi.org/10.1114/1.1451074

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.1451074

Navigation