Skip to main content
Log in

Brainstem structures involved in rapid eye movement sleep behavior disorder

  • Review Article
  • Published:
Sleep and Biological Rhythms Aims and scope Submit manuscript

Abstract

Rapid eye movement (REM) sleep behavior disorder (RBD) is a parasomnia characterized by the loss of muscle atonia during paradoxical (REM) sleep (PS). The neuronal dysfunctions responsible for RBD are not known. In the present review, we propose an updated integrated model of the mechanisms responsible for PS and explore different hypotheses explaining RBD. We propose that RBD appears based on a specific degeneration of PS-on glutamatergic neurons localized in the caudal pontine sublaterodorsal tegmental nucleus or the glycinergic/GABAergic premotoneurons localized in the medullary ventral gigantocellular reticular nucleus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schenck CH, Bundlie SR, Ettinger MG, Mahowald MW. Chronic behavioral disorders of human REM sleep: a new category of parasomnia. Sleep 1986; 9 (2): 293–308.

    CAS  PubMed  Google Scholar 

  2. Iranzo A, Santamaria J, Tolosa E. The clinical and patho-physiological relevance of REM sleep behavior disorder in neurodegenerative diseases. Sleep Med. Rev. 2009; 13 (6): 385–401.

    Article  PubMed  Google Scholar 

  3. Thomas A, Bonanni L, Onofrj M. Symptomatic REM sleep behaviour disorder. Neurol. Sci. 2007; 28 (Suppl 1): S21–36.

    Article  PubMed  Google Scholar 

  4. Lapierre O, Montplaisir J. Polysomnographic features of REM sleep behavior disorder: development of a scoring method. Neurology 1992; 42 (7): 1371–4.

    Article  CAS  PubMed  Google Scholar 

  5. Anderson KN, Shneerson JM. Drug treatment of REM sleep behavior disorder: the use of drug therapies other than clonazepam. J. Clin. Sleep Med. 2009; 5 (3): 235–9.

    PubMed  PubMed Central  Google Scholar 

  6. Jouvet M, Michel F. Corrélations électromyographiques du sommeil chez le chat décortiqué et mésencéphalique chronique. C.R. Soc. Biol. 1959; 153: 422–5.

    CAS  Google Scholar 

  7. Jouvet M, Michel F, Courjon J. Sur un stade d’activité électrique cérébrale rapide au cours du sommeil physiologique. CR Seances. Soc. Biol. 1959; 153: 1024–8.

    CAS  Google Scholar 

  8. Jouvet M. [The paradoxical phase of sleep]. Int. J. Neurol. 1965; 5 (2): 131–50.

    CAS  PubMed  Google Scholar 

  9. Sakai K. Neurons responsible for paradoxical sleep. In: Wauquier A, Janssen Research Foundation, ed. Sleep: Neurotransmitters and Neuromodulators. Raven Press: New York, 1985; 29–42.

    Google Scholar 

  10. Sakai K, Koyama Y. Are there cholinergic and noncholinergic paradoxical sleep-on neurones in the pons? Neuroreport 1996; 7 (1517): 2449–53.

    Article  CAS  PubMed  Google Scholar 

  11. Sakai K, Crochet S, Onoe H. Pontine structures and mechanisms involved in the generation of paradoxical (REM) sleep. Arch. Ital. Biol. 2001; 139: 93–107.

    CAS  PubMed  Google Scholar 

  12. Luppi PH, Sakai K, Fort P, Salvert D, Jouvet M. The nuclei of origin of monoaminergic, peptidergic, and cholinergic afferents to the cat nucleus reticularis magnocellularis: a double-labeling study with cholera toxin as a retrograde tracer. J. Comp. Neurol. 1988; 277: 1–20.

    Article  CAS  PubMed  Google Scholar 

  13. Fort P, Luppi PH, Wenthold R, Jouvet M. [Glycine immunoreactive neurons in the medulla oblongata in cats]. C. R. Acad. Sci. III 1990; 311: 205–12.

    CAS  PubMed  Google Scholar 

  14. Fort P, Luppi PH, Jouvet M. Glycine-immunoreactive neurones in the cat brain stem reticular formation. Neuroreport 1993; 4 (9): 1123–6.

    CAS  PubMed  Google Scholar 

  15. Verret L, Leger L, Fort P, Luppi PH. Cholinergic and noncholinergic brainstem neurons expressing Fos after paradoxical (REM) sleep deprivation and recovery. Eur. J. Neurosci. 2005; 21 (9): 2488–504.

    Article  PubMed  Google Scholar 

  16. Sapin E, Lapray D, Berod A et al. Localization of the brainstem GABAergic neurons controlling paradoxical (REM) sleep. PLoS ONE 2009; 4: e4272.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lu J, Sherman D, Devor M, Saper CB. A putative flipflop switch for control of REM sleep. Nature 2006; 441 (7093): 589–94.

    Article  CAS  PubMed  Google Scholar 

  18. Clement O, Sapin E, Berod A, Fort P, Luppi PH. Evidence that Neurons of the Sublaterodorsal Tegmental Nucleus Triggering Paradoxical (REM) Sleep Are Glutamatergic. Sleep 2011; 34 (4): 419–23.

    PubMed  PubMed Central  Google Scholar 

  19. Hendricks JC, Morrison AR, Mann GL. Different behaviors during paradoxical sleep without atonia depend on pontine lesion site. Brain Res. 1982; 239: 81–105.

    Article  CAS  PubMed  Google Scholar 

  20. Henley K, Morrison AR. A re-evaluation of the effects of lesions of the pontine tegmentum and locus coeruleus on phenomena of paradoxical sleep in the cat. Acta Neurobiol. Exp. (Warsz) 1974; 34 (2): 215–32.

    CAS  Google Scholar 

  21. Sastre JP, Jouvet M. Le comportement onirique du chat [Oneiric behavior in cats]. Physiol. Behav. 1979; 22 (5): 979–89.

    Article  CAS  PubMed  Google Scholar 

  22. Jouvet M. Recherches sur les structures nerveuses et les mécanismes responsables des différentes phases du sommeil physiologique. Arch. Ital. Biol. 1962; 100: 125–206.

    CAS  PubMed  Google Scholar 

  23. Webster HH, Jones BE. Neurotoxic lesions of the dorsolateral pontomesencephalic tegmentum-cholinergic cell area in the cat. II. Effects upon sleep-waking states. Brain Res. 1988; 458 (2): 285–302.

    Article  CAS  PubMed  Google Scholar 

  24. Mahowald MW, Schenck CH. REM sleep behavior disorder. In: Kryger MH, Roth T, Dement WC, eds. Principles and Practice of Sleep Medicine. Saunders: Philadelphia, PA, 2000; 389–401.

    Google Scholar 

  25. Kodama T, Lai YY, Siegel JM. Enhanced glutamate release during REM sleep in the rostromedial medulla as measured by in vivo microdialysis. Brain Res. 1998; 780: 178–81.

    Article  CAS  PubMed  Google Scholar 

  26. Holmes CJ, Jones BE. Importance of cholinergic, GABAergic, serotonergic and other neurons in the medial medullary reticular formation for sleep-wake states studied by cytotoxic lesions in the cat. Neuroscience 1994; 62: 1179–200.

    Article  CAS  PubMed  Google Scholar 

  27. Lai YY, Siegel JM. Pontomedullary glutamate receptors mediating locomotion and muscle tone suppression. J. Neurosci. 1991; 11 (9): 2931–7.

    CAS  PubMed  Google Scholar 

  28. Boissard R, Gervasoni D, Schmidt MH, Barbagli B, Fort P, Luppi PH. The rat pontomedullary network responsible for paradoxical sleep onset and maintenance: a combined microinjection and functional neuroanatomical study. Eur. J. Neurosci. 2002; 16 (10): 1959–73.

    Article  PubMed  Google Scholar 

  29. Holstege JC, Bongers CM. A glycinergic projection from the ventromedial lower brainstem to spinal motoneurons. An ultrastructural double labeling study in rat. Brain Res. 1991; 566: 308–15.

    Article  CAS  PubMed  Google Scholar 

  30. Kato G, Yasaka T, Katafuchi T et al. Direct GABAergic and glycinergic inhibition of the substantia gelatinosa from the rostral ventromedial medulla revealed by in vivo patchclamp analysis in rats. J. Neurosci. 2006; 26 (6): 1787–94.

    Article  CAS  PubMed  Google Scholar 

  31. Soja PJ, Pang W, Taepavarapruk N, McErlane SA. Spontaneous spike activity of spinoreticular tract neurons during sleep and wakefulness. Sleep 2001; 24: 18–25.

    CAS  PubMed  Google Scholar 

  32. Brooks PL, Peever JH. Glycinergic and GABA(A)-mediated inhibition of somatic motoneurons does not mediate rapid eye movement sleep motor atonia. J. Neurosci. 2008; 28 (14): 3535–45.

    Article  CAS  PubMed  Google Scholar 

  33. Chase MH. Confirmation of the consensus that glycinergic postsynaptic inhibition is responsible for the atonia of REM sleep. Sleep 2008; 31(11): 1487–91. discussion 927.

    PubMed  PubMed Central  Google Scholar 

  34. Brooks P, Peever J. Role for GABAB-mediated inhibition in the control of somatic motoneurons during REM sleep. SfN (Abstract). 2009.

    Google Scholar 

  35. Lai YY, Hsieh K C, Nguyen D, Peever J, Siegel JM. Neurotoxic lesions at the ventral mesopontine junction change sleep time and muscle activity during sleep: an animal model of motor disorders in sleep. Neuroscience 2008; 154: 431–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chase MH, Morales FR. The atonia and myoclonia of active (REM) sleep. Annu. Rev. Psychol. 1990; 41: 557–84.

    Article  CAS  PubMed  Google Scholar 

  37. Burgess C, Lai D, Siegel J, Peever J. An endogenous glutamatergic drive onto somatic motoneurons contributes to the stereotypical pattern of muscle tone across the sleep-wake cycle. J. Neurosci. 2008; 28 (18): 4649–60.

    Article  CAS  PubMed  Google Scholar 

  38. Holstege G. Descending motor pathways and the spinal motor system: limbic and nonlimbic components. Prog. Brain Res. 1991; 87: 307–421.

    Article  CAS  PubMed  Google Scholar 

  39. Lee MG, Hassani OK, Jones BE. Discharge of identified orexin/hypocretin neurons across the sleep-waking cycle. J. Neurosci. 2005; 25 (28): 6716–20.

    Article  CAS  PubMed  Google Scholar 

  40. Xi MC, Fung SJ, Yamuy J, Morales FR, Chase MH. Induction of Active (REM) Sleep and Motor Inhibition by Hypocretin in the Nucleus Pontis Oralis of the Cat. J. Neurophysiol. 2002; 87: 2880–8.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre-Hervé Luppi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luppi, PH., ClÉMent, O. & Fort, P. Brainstem structures involved in rapid eye movement sleep behavior disorder. Sleep Biol. Rhythms 11 (Suppl 1), 9–14 (2013). https://doi.org/10.1111/j.1479-8425.2012.00544.x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1111/j.1479-8425.2012.00544.x

Key words

Navigation