Skip to main content
Log in

On the Computation of Entropy Prior Complexity and Marginal Prior Distribution for the Bernoulli Model

  • Published:
Journal of Statistical Theory and Practice Aims and scope Submit manuscript

Abstract

As the size and complexity of models grow, the choice of the best model becomes a difficult and challenging task. Once the best model is specified, the goodness of fit of the model needs to be examined first. A highly complex model may provide a good fit, but giving no consideration to model complexity could result in incorrect estimates of parameter values and predictions. In order to improve the model selection process, model complexity needs to be defined clearly. This article studies different aspects of model complexity and discusses the extent to which they can be measured. The most common attribute that is usually ignored from many complexity measures is the parameter prior, which is an inherent part of the model and could impact the complexity significantly. The concept of parameter prior and its connection to model complexity are therefore discussed here, and some relationships to the entropy measure elements are also addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balakrishnan, N., C. Koukouvinos, and C. Parpoula. 2012. Analysis of a supersaturated design using entropy prior complexity for binary responses via generalized linear models. Stat. Methodol., 9, 478–185.

    Article  MathSciNet  Google Scholar 

  • Balasubramanian, V. 1997. Statistical inference, Occam’s Razor, and statistical mechanics on the space of probability distributions. Neural Comput., 9, 349–368.

    Article  Google Scholar 

  • Bennett, C. H. 1986. On the nature and origin of complexity in discrete, homogeneous locally-interacting systems. Found. Phys., 16, 585–592.

    Article  MathSciNet  Google Scholar 

  • Berger, A. L, S. Della Pietra, and V. J. Della Pietra. 1996. A maximum-entropy approach to natural language processing. Comput. Linguistics, 22, 39–71.

    Google Scholar 

  • Bialek, W., I. Nemenman, and N. Tishby. 2001. Predictability, complexity, and learning. Neural Comput., 13, 2409–2463.

    Article  Google Scholar 

  • Brooks, R. J., and A. M. Tobias. 1996. Choosing the best model: Level of detail, complexity and model performance. Math. Comput. Model., 24, 1–14.

    Article  Google Scholar 

  • Brookshear, J. G. 1989. Theory of computation: Formal languages, automata, and complexity. Redwood City, CA: Benjamin-Cummings Publishing Company.

    MATH  Google Scholar 

  • Bueso, M. C., G. Qian, and J. M. Angulo. 1999. Stochastic complexity and model selection from incomplete data. J. Stat. Plan. Inference, 76, 273–284.

    Article  Google Scholar 

  • Catalan, R. G., J. Garay, and R. López-Ruiz. 2002. Features of the extension of a statistical measure of complexity for continuous systems. Phys. Rev. E, 66, 011102(6).

  • Caticha, A. 2007. Information and entropy. In Bayesian inference and maximum entropy methods in science and engineering, ed. K. Knuth et al., AIP Conf. Proc., vol. 954, 11. New York, NY: AIP.

    Google Scholar 

  • Charles, S. B. 2002. A comparison of marginal likelihood computation methods. In COMPSTAT 2002: Proceedings in computational statistics, ed. W. Härdle and B. Ronz, 111–117. Berlin, Heidelberg: Springer-Verlag.

    Google Scholar 

  • Crutchfield, J. P., and K. Young. 1989. Inferring statistical complexity. Phys. Rev. Lett., 63, 105–108.

    Article  MathSciNet  Google Scholar 

  • Della Pietra, S., V. J. Della Pietra, and J. D. Lafferty. 1997. Inducing features of random fields. IEEE Trans. Pattern Anal. Machine Intelligence, 19, 380–393.

    Article  Google Scholar 

  • Dunn, J. 2000. Model complexity: The fit to random data reconsidered. Psychol. Res., 63, 174–182.

    Article  Google Scholar 

  • Feldman, D. P., and J. P. Crutchfield. 1998. Measures of statistical complexity. Phys. Lett. A, 238, 244–252.

    Article  MathSciNet  Google Scholar 

  • Grünwald, P. D. 2005. MDL tutorial. In Advances in minimum description length: Theory and applications, ed. P. D. Grünwald, I. J. Myung, and M. A. Pitt, 16–17. Cambridge, MA: MIT Press.

    Chapter  Google Scholar 

  • Grünwald, P. D. 2007. The minimum description length principle. Cambridge, MA: MIT Press.

    Book  Google Scholar 

  • Hall, P., and J. Hannan. 1988. On stochastic complexity and nonparametric density estimation. Biometrika, 75, 705–714.

    Article  MathSciNet  Google Scholar 

  • Hansen, A. J., and B. Yu. 2001. Model selection and the principle of minimum description length. J. Am. Stat. Assoc., 96, 746–774.

    Article  MathSciNet  Google Scholar 

  • Hopcroft, J. E., R. Motwani, and J. D. Ullman. 2000. Introduction to automata theory, languages, and computation, 3rd ed. Reading, MA: Addison-Wesley.

    MATH  Google Scholar 

  • Jaynes, E. T. 2003. Probability theory—The logic of science. Cambridge, UK: Cambridge University Press.

    Book  Google Scholar 

  • Kass, R. E., and A. E. Raftery. 1995. Bayes factors. J. Am. Stat. Assoc., 90, 773–795.

    Article  MathSciNet  Google Scholar 

  • Lee, M. D. 2002. Generating additive clustering models with minimal stochastic complexity. J. Classification, 19, 69–85.

    Article  MathSciNet  Google Scholar 

  • Li, M., and P. M. B. Vitanyi. 1993. An introduction to Kolmogorov complexity and its applications. New York, NY: Springer-Verlag.

    Book  Google Scholar 

  • López-Ruiz, R., H. L. Mancini, and X. Calbet. 1995. A statistical measure of complexity. Phys. Lett. A, 209, 321–326.

    Article  Google Scholar 

  • Myung, I. J., and M. A. Pitt. 1997. Applying Occam’s razor in modeling cognition: A Bayesian approach. Psychonomic Bull. Rev., 4, 79–95.

    Article  Google Scholar 

  • Myung, I. J. 2000. The importance of complexity in model selection. J. Math. Psychol., 44, 190–204.

    Article  Google Scholar 

  • Myung, I. J., V. Balasubramanian, and M. A. Pitt. 2000. Counting probability distributions: Differential geometry and model selection. Proc. Nat. Acad. Sci. USA, 97, 11170–11175.

    Article  MathSciNet  Google Scholar 

  • Rissanen, J. 1986. Stochastic complexity and modeling. Ann. Statistics, 14, 1080–1100.

    Article  MathSciNet  Google Scholar 

  • Rissanen, J. 1987. Stochastic complexity (with discussion). J. R. Stat. Soc. Ser. B, 49, 223–265.

    MathSciNet  MATH  Google Scholar 

  • Rissanen, J. 1989. Stochastic complexity in statistical inquiry. Singapore: World Scientific Publishing Company.

    MATH  Google Scholar 

  • Rissanen, J. 1996. Fisher information and stochastic complexity. IEEE Trans. Information Theory, 42, 40–47.

    Article  MathSciNet  Google Scholar 

  • Rissanen, J. 2005. Complexity and information in modeling. Chapter IV In Computability, complexity and constructivity in economic analysis, ed. K. Velupillai, chap. IV. Oxford, UK: Blackwell.

    Google Scholar 

  • Rissanen, J. 2007. Information and complexity in statistical modeling. New York, NY: Springer-Verlag.

    Book  Google Scholar 

  • Rissanen, J. 2012. Optimal estimation of parameters. Cambridge, UK: Cambridge University Press.

    Book  Google Scholar 

  • Shannon, C. E. 1948. A mathematical theory of communication. Bell System Tech. J., 27, 379–423, 623–656.

    Article  MathSciNet  Google Scholar 

  • Spiegelhalter, D. J., N. G. Best, B. P. Carlin, and A. Van der Linde. 2002. Bayesian measures of model complexity and fit. J. R. Stat. Soc. Ser. B, 64, 583–639 (with discussion).

    Article  MathSciNet  Google Scholar 

  • Van der Linde, A. 2012. A Bayesian view of model complexity. Stat. Neerland., 66, 253–271.

    Article  MathSciNet  Google Scholar 

  • Vanpaemel, W. 2009. Measuring model complexity with the prior predictive. In Advances in neural information processing systems (NIPS), ed. Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, vol. 22, 1919–1927. Red Hook, NY: Curran Associates.

    Google Scholar 

  • Wallis, K. F. 2006. A note on the calculation of entropy from histograms. Unpublished paper, University of Warwick, Coventry, UK.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Koukouvinos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balakrishnan, N., Koukouvinos, C. & Parpoula, C. On the Computation of Entropy Prior Complexity and Marginal Prior Distribution for the Bernoulli Model. J Stat Theory Pract 9, 59–72 (2015). https://doi.org/10.1080/15598608.2014.897139

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1080/15598608.2014.897139

AMS Subject Classification

Keywords

Navigation