Advertisement

Journal of Statistical Theory and Practice

, Volume 11, Issue 4, pp 503–514 | Cite as

Estimating a multivariate model with discrete Weibull margins

  • Alessandro Barbiero
Article

Abstract

Recently, a proposal for simulating correlated discrete Weibull variables has been suggested, based on the Gaussian copula. Although the procedure is straightforward and allows the user to directly assign the desired pairwise correlations between the discrete margins (or simply assign the correlation matrix of the Gaussian copula), on the other hand the estimation process is more tricky. In this work, we describe and assess, with a special focus on the bivariate case, three techniques for the estimation of the model parameters; an application to real data is provided as well.

Keywords

Correlated counts Gaussian copula inference function for margins maximum likelihood 

AMS Subject Classification

62H20 65C60 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arbous, A. G., and J. E. Kerrich. 1951. Accident statistics and the concept of accident proneness. Biometrics 7 (4):340–432.CrossRefGoogle Scholar
  2. Barbiero, A. 2015a. DiscreteWeibull: Discrete Weibull distributions (Type 1 and 3), R package version 1.1. https://doi.org/CRAN.R-project.org/package=DiscreteWeibull.
  3. Barbiero, A. 2015b. Simulating correlated discrete Weibull variables: a proposal and an implementation in the R environment. In International Conference of Computational Methods in Science and Engineering 2015, AIP conference proceedings 1702, eds. T. E. Simos, Z. Kalogiratou, and T. Monovasilis, 190017.Google Scholar
  4. Barbiero, A. 2016. A comparison of methods for estimating parameters of the type I discrete Weibull distribution. Statistics and Its Interface 9 (2): 203–212.MathSciNetCrossRefGoogle Scholar
  5. Barbiero, A., and P. A. Ferrari. 2015a. GenOrd: Simulation of ordinal and discrete variables with given correlation matrix and marginal distributions, R package version 1.4.0. https://doi.org/CRAN.R-project.org/package=GenOrd.
  6. Barbiero, A., and P. A. Ferrari. 2015b. Simulating correlated Poisson variables. Applied Stochastic Models in Business and Industry 31 (5):669–680.MathSciNetCrossRefGoogle Scholar
  7. Cario, M. C., and B. L. Nelson. 1997. Modeling and generating random vectors with arbitrary marginal distributions and correlation matrix. Technical report, Department of Industrial Engineering and Management Sciences, Northwestern University, Evanston, IL.Google Scholar
  8. Englehardt, J. D., and R. C. Li. 2011. The discrete Weibull distribution: An alternative for correlated counts with confirmation for microbial counts in water. Risk Analysis 31: 370–381.CrossRefGoogle Scholar
  9. Englehardt, J. D. 2015. Distributions of autocorrelated first-order kinetic outcomes: Illness severity. PLoS ONE 10 (6):e0129042.CrossRefGoogle Scholar
  10. Ferrari, P. A. and A. Barbiero. 2012. Simulating ordinal data. Multivariate Behavioral Research 47 (4): 566–589.CrossRefGoogle Scholar
  11. Genest, C., and J. Nešlehová. 2007. A primer on copulas for count data. Astin Bulletin 37 (2):475–515.MathSciNetCrossRefGoogle Scholar
  12. Joe, H. 2005. Asymptotic efficiency of the two-stage estimation method for copula-based models. Journal of Multivariate Analysis 94 (2):401–419.MathSciNetCrossRefGoogle Scholar
  13. Kocherlakota, S., and K. Kocherlakota. 1992. Bivariate discrete distributions. New York, NY: Marcel Dekker.MATHGoogle Scholar
  14. Nakagawa, T., and S. Osaki. 1975. The discrete Weibull distribution. IEEE Transactions on Reliability 24 (5):300–301.CrossRefGoogle Scholar
  15. Nikoloulopoulos, A. K. 2013. Copula-based models for multivariate discrete response data. In Copulae in mathematical and quantitative finance, Lecture notes in statistics, ed. P. Jaworski, F. Durante, and W. Härdle, vol. 213, 231–49. Berlin, Heidelberg, Germany: Springer.CrossRefGoogle Scholar
  16. Padgett, W. J., and J. D. Spurrier. 1985. Discrete failure models. IEEE Transactions on Reliability 34 (3):253–256.CrossRefGoogle Scholar
  17. R Core Team 2016. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://doi.org/www.R-project.org.
  18. Stein, W. E., and R. Dattero. 1984. A new discrete Weibull distribution. IEEE Transactions on Reliability 33 (2):196–197.CrossRefGoogle Scholar

Copyright information

© Grace Scientific Publishing, 20 Middlefield Ct, Greensboro, NC 27455 2017

Authors and Affiliations

  1. 1.Department of Economics, Management, and Quantitative MethodsUniversità degli Studi di MilanoMilanItaly

Personalised recommendations