Advertisement

Journal of Statistical Theory and Practice

, Volume 11, Issue 4, pp 594–603 | Cite as

Chi-squared goodness-of-fit tests for the generalized Rayleigh distribution

  • D. Tilbi
  • N. Seddik-Ameur
Article

Abstract

In this article, we propose the construction of modified chi-squared goodness-of-fit tests for the generalized Rayleigh distribution for both complete and censored data. These tests are based on the Nikulin–Rao–Robson (NRR) statistic and its modification proposed for right-censored data by Bagdonavičius and Nikulin. Numerical examples of simulated samples and real data are given to illustrate the usefulness of the proposed tests.

Keywords

Censored data chi-squared test generalized Rayleigh distribution maximum likelihood estimation NRR statistic 

AMS Subject Classification

62E15 62F03 62G05 62G10 62N05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abd-Elfattah, A. M. 2011. Goodness-of-fit test for the generalized Rayleigh distribution with unknown parameter. Journal of Statistical Computation and Simulation 81 (3):357–66.MathSciNetCrossRefGoogle Scholar
  2. Al-Khedhairi, A., A. Sarhan, and L. Tadj. 2007. Estimation of the generalized Rayleigh distribution parameter. International Journal of Reliability and Applications 12:199–210.Google Scholar
  3. Bagdonavicius, V., and M. Nikulin. 2011. Chi-squared tests for general composite hypotheses from censored samples. Comptes Rendus de l’Académie des Sciences de Paris, Mathématiques 349 (3–4): 219–23.MathSciNetCrossRefGoogle Scholar
  4. Bagdonavicius, V., R. J. Levuliene, and M. Nikulin. 2013. Chi-squared goodness-of-fit tests for parametric accelerated failure time model. Communications in Statistics–Theory and Methods 42 (15):2768–85.MathSciNetCrossRefGoogle Scholar
  5. Fathipour, P., A. Abolhasani, and H. J. Khamnei. 2013. Estimating in the generalized Rayleigh distribution with different scale parameters. Applied Mathematical Sciences 7 (2):87–92.MathSciNetCrossRefGoogle Scholar
  6. Kundu, D., and M. Z. Raqab. 2005. Generalized Rayleigh distribution: Different methods of estimation. Computational Statistics and Data Analysis 49:187–200.MathSciNetCrossRefGoogle Scholar
  7. Mudholkar, G. S., and D. K. Srivastava. 1993. Exponentiated Weibull family for analyzing bathtub failurerate data. IEEE Transactions on Reliability 42:299–302.CrossRefGoogle Scholar
  8. Mudholkar, G. S, D. K. Srivastava, and C. T. Lin. 1995. Some p-variate adaptations of the Shapiro–Wilk test of normality. Communications in Statistics–Theory and Methods 24:953–85.MathSciNetCrossRefGoogle Scholar
  9. Nikulin, M. S. 1973. Chi-square test for continuous distribution with shift and scale parameters. Theory of Probability and Its Applications 19:559–68.zbMATHGoogle Scholar
  10. Rao, G. S. 2014. Estimation of reliability in multicomponent stress-strength based on generalized Rayleigh distribution. Journal of Modern Applied Statistical Methods 13 (1):article 24. https://doi.org/digitalcommons.wayne.edu/jmasm/vol13/iss1/24.CrossRefGoogle Scholar
  11. Rao, K. C., and D. S. Robson. 1974. A chi-square statistic for goodness-of-fit for tests with in the exponential family. Communications in Statistics 3:1139–53.CrossRefGoogle Scholar
  12. Surles, J. G., and W. J. Padgett. 2001. Inference for reliability and stress-strength for a scaled Burr type X distribution. Lifetime Data Analysis 7:187–200.MathSciNetCrossRefGoogle Scholar
  13. Surles, J. G., and W. J. Padgett. 2004. Some Properties of a Scaled Burr X Distribution. Journal of Statistical Planning and Inference 128:271–80.MathSciNetCrossRefGoogle Scholar
  14. Van der Vaart, A. W. 1998. Asymptotic statistics. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
  15. Voinov, V., M. Nikulin, and N. Balakrishnan. 2013. Chi-squared goodness of fit tests with applications. Academic Press, Elsevier.zbMATHGoogle Scholar
  16. Whitmore, G. A. 1983. A regression method for censored inverse-gaussian data. Canadian Journal of Statistics 11 (4):305–15.MathSciNetCrossRefGoogle Scholar

Copyright information

© Grace Scientific Publishing, 20 Middlefield Ct, Greensboro, NC 27455 2017

Authors and Affiliations

  1. 1.Laboratory of Probability and StatisticsBadji Mokhtar UniversityAnnabaAlgeria

Personalised recommendations