Journal of Statistical Theory and Practice

, Volume 11, Issue 2, pp 254–268 | Cite as

Efficiency of the coordinate-exchange algorithm in constructing exact optimal discrete choice experiments

  • T. Tian
  • M. YangEmail author


The use of discrete choice experiments (DCEs) for modeling real marketplace choices, in both fundamental and applied research, has gained much attention recently. To improve the quality of designing DCEs, most researchers have drawn on optimal design theory. Because of the nonlinearity of the probabilistic choice models, to construct a proper choice design, one needs the help of efficient search algorithms, among which the coordinate-exchange algorithm (CEA) has shown itself to work very well under the widely used multinomial logit discrete choice model. However, due to the discrete nature of the choice design, there are no computationally feasible ways to verify that the resulting design is indeed optimal or efficient. In this article, an approach of evaluating the performance of the CEA for Bayesian optimal designs is proposed. This approach gives a lower bound of the efficiency of the resulting design under the continuous/approximate optimal design framework where well-established mathematical tools and theories can be modified and utilized. Empirical studies show that the CEA is highly efficient for deriving homogeneous optimal designs.


Bayesian optimal design D-optimality multinomial logit model A-optimality V-optimality 

AMS Subject Classification

Primary 62K05 Secondary 62J12, 62P25 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, D. A., and J. B. Wiley. 1992. Efficient choice set designs for estimating cross-effects models. Marketing Letters 3 (4):357–70.CrossRefGoogle Scholar
  2. Biedermann, S., and M. Yang. 2016. Numerical construction of parameter robust optimal designs: A new efficient algorithm. In preparation. Bunch, D. S., J. J. Louviere, and D. A. Anderson. 1996. A comparison of experimental design strategies for multinomial logit models: The case of generic attributes. University of California Davis Graduate School of Management Working Paper, 11–96. Davis, CA.Google Scholar
  3. Carlsson, F., and P. Martinsson. 2003. Design techniques for stated preference methods in health economics. Health Economics 12 (4):281–94.CrossRefGoogle Scholar
  4. Cook, R. D., and C. J. Nachtsheim. 1980. A comparison of algorithms for constructing exact D-optimal designs. Technometrics 22 (3):315–24.CrossRefGoogle Scholar
  5. Fedorov, V. V. 1972. Theory of optimal experiments. New York, NY: Academic Press.Google Scholar
  6. Graßhoff, U., H. Großmann, H. Holling, and R. Schwabe. 2004. Optimal designs for main effects in linear paired comparison models. Journal of Statistical Planning and Inference 126 (1):361–76.MathSciNetCrossRefGoogle Scholar
  7. Gotwalt, C. M., B. Jones, and D. M. Steinberg. 2009. Fast computation of designs robust to parameter uncertainty for nonlinear settings. Technometrics 51 (1):88–95.MathSciNetCrossRefGoogle Scholar
  8. Green, P. E. 1974. On the design of choice experiments involving multifactor alternatives. Journal of Consumer Research 1 (2):61–68.CrossRefGoogle Scholar
  9. Grossmann, H., H. Holling, and R. Schwabe. 2002. Advances in optimum experimental design for conjoint analysis and discrete choice models. Advances in Econometrics 16:93–118.CrossRefGoogle Scholar
  10. Huber, J., and K. Zwerina. 1996. The importance of utility balance in efficient choice designs. Journal of Marketing Research 33 (3):307–17.CrossRefGoogle Scholar
  11. Kessels, R., P. Goos, and M. Vandebroek. 2006. A comparison of criteria to design efficient choice experiments. Journal of Marketing Research 43 (3):409–19.CrossRefGoogle Scholar
  12. Kessels, R., B. Jones, P. Goos, and M. Vandebroek. 2009. An efficient algorithm for constructing Bayesian optimal choice designs. Journal of Business and Economic Statistics 27 (2):279–91.MathSciNetCrossRefGoogle Scholar
  13. Kessels, R., B. Jones, P. Goos, and M. Vandebroek. 2011. The usefulness of Bayesian optimal designs for discrete choice experiments. Applied Stochastic Models in Business and Industry 27 (3):173–88.MathSciNetCrossRefGoogle Scholar
  14. Kiefer, J. 1974. General equivalence theory for optimum designs (approximate theory). Annals of Statistics 2:849–79.MathSciNetCrossRefGoogle Scholar
  15. Kuhfeld, W. F., M. Garratt, and R. D. Tobias. 1994. Efficient experimental design with marketing research applications. Journal of Marketing Research 31 (4):545–57.CrossRefGoogle Scholar
  16. Kuhfeld, W. F., and R. D. Tobias. 2005. Large factorial designs for product engineering and marketing research applications. Technometrics 47 (2):132–41.MathSciNetCrossRefGoogle Scholar
  17. Lazari, A. G., and D. A. Anderson. 1994. Designs of discrete choice set experiments for estimating both attribute and availability cross effects. Journal of Marketing Research 31 (3):375–83.CrossRefGoogle Scholar
  18. Li, W., C. J. Nachtsheim, K. Wang, R. Reul, and M. Albrecht. 2013. Conjoint analysis and discrete choice experiments for quality improvement. Journal of Quality Technology 45 (1):74–99.CrossRefGoogle Scholar
  19. Liu, Q., and N. Arora. 2011. Efficient choice designs for a consider-then-choose model. Marketing Science 30 (2):321–38.CrossRefGoogle Scholar
  20. Liu, Q., and Y. Tang. 2015. Construction of heterogeneous conjoint choice designs: A new approach. Marketing Science 34 (3):346–66.CrossRefGoogle Scholar
  21. McFadden, D. 1974. Conditional logit analysis of qualitative choice behavior. In Frontiers in economics, ed. P. Zarembka, 105–42. New York, NY: Academic Press.Google Scholar
  22. Meyer, R. K., and C. J. Nachtsheim. 1995. The coordinate-exchange algorithm for constructing exact optimal experimental designs. Technometrics 37 (1):60–69.MathSciNetCrossRefGoogle Scholar
  23. Sándor, Z., and M. Wedel. 2001. Designing conjoint choice experiments using managers’ prior beliefs. Journal of Marketing Research 38 (4):430–44.CrossRefGoogle Scholar
  24. Sándor, Z., and M. Wedel. 2002. Profile construction in experimental choice designs for mixed logit models. Marketing Science 21 (4):455–75.CrossRefGoogle Scholar
  25. Sándor, Z., and M. Wedel. 2005. Heterogeneous conjoint choice designs. Journal of Marketing Research 42 (2):210–18.CrossRefGoogle Scholar
  26. Silvey, S. D., D. M. Titterington, and B. Torsney. 1978. An algorithm for optimal designs on a finite design space. Communications in Statistics—Theory and Methods 14 (7):1379–89.CrossRefGoogle Scholar
  27. Sloan, I. H., and S. Joe. 1994. Lattice methods for multiple integration. New York, NY: Oxford University Press.zbMATHGoogle Scholar
  28. Wynn, H. P. 1970. The sequential generation of D-optimal experimental designs. Annals of Mathematical Statistics 41 (5):1655–64.MathSciNetCrossRefGoogle Scholar
  29. Yang, M., S. Biedermann, and E. Tang. 2013. On optimal designs for nonlinear models: A general and efficient algorithm. Journal of the American Statistical Association 108 (504):1411–20.MathSciNetCrossRefGoogle Scholar
  30. Yu, J., P. Goos, and M. Vandebroek. 2009. Efficient conjoint choice designs in the presence of respondent heterogeneity. Marketing Science 28 (1):122–35.CrossRefGoogle Scholar
  31. Yu, Y. 2011. D-optimal designs via a cocktail algorithm. Statistics and Computing 21 (4):475–81.MathSciNetCrossRefGoogle Scholar
  32. Zwerina, K., J. Huber, and W. F. Kuhfeld. 2005. A general method for constructing efficient choice designs (updated version). SAS Technical Document TS-722E.

Copyright information

© Grace Scientific Publishing, 20 Middlefield Ct, Greensboro, NC 27455 2017

Authors and Affiliations

  1. 1.Department of Mathematics, Statistics, and Computer ScienceUniversity of Illinois at Chicago, MSCSChicagoUSA
  2. 2.College of MathematicsChongqing University of Science and TechnologyChongqingChina

Personalised recommendations