Journal of Statistical Theory and Practice

, Volume 9, Issue 3, pp 646–657 | Cite as

Statistical Inference on Middle-Censored Data in a Dependent Setup

  • Nasser Davarzani
  • Ahmad ParsianEmail author
  • Ralf Peeters


In this article, we deal with a dependent middle censoring with a censoring interval of fixed length, where the lifetime and lower bound of censoring interval are variables with a Marshall-Olkin bivariate exponential distribution. In this setup, we derive maximum likelihood estimates of the unknown parameters, using some iterative method. We also propose the Bayes estimates of the parameters under gamma priors and the squared error loss function. Finally, a Monte Carlo simulation is carried out to compare these estimators.


Bayes estimation Dependent censoring Middle-censored data 

AMS Subject Classification

62F15 62F10 62G05 62N01 62N02 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arnold, B. C., and S. J. Press. 1983. Bayesian inference for Pareto populations. J. Econometrics, 21, 287–306.MathSciNetCrossRefGoogle Scholar
  2. Chib, S., and E. Greenberg. 1995. Understanding the Metropolis-Hastings algorithm. Am. Statistician, 49, 327–335.Google Scholar
  3. Davarzani, N., and A. Parsian. 2010. Bayesian inference in dependent right censoring. Communi. Stat. Theory Methods, 39, 1270–1288.MathSciNetCrossRefGoogle Scholar
  4. Davarzani, N., and A. Parsian. 2011. Statistical inference for discrete middle-censored data. Stat. Plann. and Inference, 141(4), 1455–1462.MathSciNetCrossRefGoogle Scholar
  5. Hongyu, J., J. P. Fine, M. R. Kosorok, and R. Chappell. 2005. Pseudo self-consistent estimation of a copula model with informative censoring. Scand. J. Stat., 32(1), 1–20.MathSciNetCrossRefGoogle Scholar
  6. Iyer, S. K., D. Kundu, and S. Rao Jammalamadaka. 2008. Analysis of middle censored data with exponential lifetime distributions. J. Stat. Plan. Inference, 138, 3550–3560.MathSciNetCrossRefGoogle Scholar
  7. Jammalamadaka, S. Rao, and V. Mangalam. 2003. Non-parametric estimation for middle censored data. J. Nonparametric Stat., 15, 253–265.MathSciNetCrossRefGoogle Scholar
  8. Jammalamadaka, S. Rao, and S. K. Iyer. 2005. Approximate self consistency for middle censored data. J. Stat. Plan. Inference, 124, 75–86.MathSciNetCrossRefGoogle Scholar
  9. Lawless, J. F. 2004. Statistical models and methods for lifetime data. New York, NY: John Wiley and Sons.zbMATHGoogle Scholar
  10. Marshall, A. W., and I. A. Olkin. 1967. A generalized bivariate exponential distribution. J. Appl. Prob., 4, 291–302.MathSciNetCrossRefGoogle Scholar
  11. Pradhan, B., and D. Kundu. 2014. Analysis of interval-censored data with Weibull lifetime distribution. Sankhya B, 76-B(Part 1), 120–139.MathSciNetCrossRefGoogle Scholar
  12. Pena, A., and A. K. Gupta. 1990. Bayes estimation for the Marshall-Olkin exponential distribution. J. R. Stat. Society Ser. B, 52, 379–389.MathSciNetzbMATHGoogle Scholar

Copyright information

© Grace Scientific Publishing 2015

Authors and Affiliations

  1. 1.Department of Knowledge EngineeringMaastricht UniversityMaastrichtNetherlands
  2. 2.School of Mathematics, Statistics, and Computer ScienceUniversity of TehranTehranIran

Personalised recommendations