Advertisement

Journal of Statistical Theory and Practice

, Volume 9, Issue 3, pp 506–523 | Cite as

Assessment of Exponential Methods of Estimation Under Nonresponse in Two-Occasion Successive Sampling

  • G. N. Singh
  • M. Khetan
  • S. Maurya
Article

Abstract

This article deals with the problem of estimation of current population mean when nonresponse occurs on the current (second) occasion in two-occasion successive sampling. Using the subsampling of nonrespondent technique, exponential-type estimators of current population mean have been proposed and their properties are examined. Optimum replacement strategies for the proposed estimators have been suggested and empirical studies are carried out to assess the performances of the proposed estimators. Results are interpreted and suitable recommendations are made.

Keywords

Auxiliary information Bias Mean square error Nonresponse Optimum replacement strategy Successive sampling 

AMS Subject Classification

62D05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bahl, S., and R. K. Tuteja. 1991. Ratio and product type exponential estimator. Information Optimization Sci., XII(I), 159–163.MathSciNetCrossRefGoogle Scholar
  2. Biradar, R. S., and H. P. Singh. 2001. Successive sampling using auxiliary information on both occasions. Calif. Stat. Assoc. Bull., 51(203–204), 243–251.MathSciNetMATHGoogle Scholar
  3. Chaturvedi, D. K., and T. P. Tripathi. 1983. Estimation of population ratio on two occasions using multivariate auxiliary information. J. Indian Stat. Assoc., 21, 113–120.MathSciNetGoogle Scholar
  4. Choudhary, R. K., H. V. L. Bathal, and U. C. Sud. 2004. On non-response in sampling on two occasions. J. Indian Soc. Agric. Stat., 58(3), 331–343.MathSciNetGoogle Scholar
  5. Cochran, W. G. 1977. Sampling techniques, 3rd ed. New York, NY: John Wiley & Sons.MATHGoogle Scholar
  6. Das, A. K. 1982. Estimation of population ratio on two occasions. J. Indian Soc. Agric. Stat., 34, 1–9.Google Scholar
  7. Eckler, A. R. 1955. Rotation Sampling. Ann. Math. Stat., 664–685.MathSciNetCrossRefGoogle Scholar
  8. Fabian, C. O., and L. Hyunshik. 2000. Double sampling for ratio and regression estimation with sub-sampling the non-respondents. Survey Methodol., 26(2), 183–188.Google Scholar
  9. Feng, S., and G. Zou. 1997. Sample rotation method with auxiliary variable. Commun. Stat. Theory Methodol., 26(6), 1497–1509.MathSciNetCrossRefGoogle Scholar
  10. Gupta, P. C. 1979. Sampling on two successive occasions. J. Stat. Res., 13, 7–16.MathSciNetGoogle Scholar
  11. Hansen, M. H., and W. N. Hurwitz. 1946. The problem of the non-response in sample surveys. J. Amer. Stat. Assoc., 41, 517–529.CrossRefGoogle Scholar
  12. Jessen, R. J. 1942. Statistical investigation of a sample survey for obtaining farm facts. Iowa Agricultural Experiment Station Road Bulletin No. 304, Ames, IA.Google Scholar
  13. Patterson, H. D. 1950. Sampling on successive occasions with partial replacement of units. J. R. Stat. Assoc., Ser. B, 12, 241–255.MATHGoogle Scholar
  14. Rao, J. N. K., and J. E. Graham. 1964. Rotation design for sampling on repeated occasions. J. Am. Stat. Assoc., 59, 492–509.MathSciNetCrossRefGoogle Scholar
  15. Reddy, V. N. 1978. A study on the use of prior knowledge on certain population parameters. Sankhya, 40C, 29–37.MATHGoogle Scholar
  16. Sen, A. R. 1971. Successive sampling with two auxiliary variables. Sankhya, Ser. B, 33, 371–378.Google Scholar
  17. Sen, A. R. 1972. Successive sampling with p (p ≥ 1) auxiliary variables. Ann. Math. Stat., 43, 2031–2034.MathSciNetCrossRefGoogle Scholar
  18. Sen, A. R. 1973. Theory and application of sampling on repeated occasions with several auxiliary variables. Biometrics, 29, 381–338.CrossRefGoogle Scholar
  19. Singh, G. N. 2003. Estimation of population mean using auxiliary information on recent occasion in h occasions successive sampling. Stat. Transition, 6(4), 523–532.Google Scholar
  20. Singh, G. N. 2005. On the use of chain-type ratio estimator in successive sampling. Stat. Transition, 7(1), 21–26.MathSciNetGoogle Scholar
  21. Singh, G. N., and F. Homa. 2013. Effective rotation patterns in successive sampling over two occasions. J. Stat. Theory Pract., 7(1), 146–155.MathSciNetCrossRefGoogle Scholar
  22. Singh, G. N., and J. P. Karna. 2009. Estimation of population mean on current occasion in two occasion rotation patterns. Metron, 57(1), 69–85.Google Scholar
  23. Singh, G. N., and K. Priyanka. 2006. On the use of chain-type ratio to difference estimator in successive sampling. Int. J. Appl. Math. Stat., 5(S06), 41–49.MathSciNetMATHGoogle Scholar
  24. Singh, G. N., and K. Priyanka. 2007. Effect of non-response on current occasion in search of good rotation patterns on successive occasions. Stat. Transition N. Ser., 8(2), 273–292.Google Scholar
  25. Singh, G. N., and K. Priyanka. 2008a. Search of good rotation patterns to improve the precision of the estimates at current occasion. Commun. Stat. Theory Methodol., 37(3), 337–348.MathSciNetCrossRefGoogle Scholar
  26. Singh, G. N., and K. Priyanka. 2008b. On the use of several auxiliary variates to improve the precision of estimates at current occasion. J. Indian Soc. Agric. Stat., 62(3), 253–265.MathSciNetMATHGoogle Scholar
  27. Singh, G. N., and V. K. Singh. 2001. On the use of auxiliary information in successive sampling. J. Indian Soc. Agric. Stat., 54(1), 1–12.MathSciNetMATHGoogle Scholar
  28. Singh, H. P., and S. Kumar. 2008. A regression approach to the estimation of finite population mean in the presence of non-response, Aust. NZ J. Stat., 50(4), 395–408.MathSciNetCrossRefGoogle Scholar
  29. Singh, H. P., and S. Kumar. 2010. Estimation of population product in presence of non-response in successive sampling. Stat. Papers, 51(4), 975–996.MathSciNetCrossRefGoogle Scholar
  30. Singh, H. P., and S. Kumar. 2011. Effect of non-response on a class of estimators of population mean on current occasion in successive sampling on two occasions. J. Probability Stat. Sci., 9(1), 69–89.MathSciNetGoogle Scholar
  31. Singh, H. P., and G. K. Vishwakarma. 2007. Modified exponential ratio and product estimators for finite population mean in double sampling. Aust. J. Stat., 36(3), 217–225.CrossRefGoogle Scholar
  32. Singh, V. K., G. N. Singh, and D. Shukla. 1991. An efficient family of ratio cum difference type estimators in successive sampling over two occasions. J. Sci. Res., 41C, 149–159.Google Scholar
  33. Sukhatme, P. V., B. V. Sukhatme, S. Sukhatme, and C. Ashok. 1984. Sampling theory of surveys with applications. Ames, IA: Iowa State University Press; and New Delhi, India: Indian Society of Agriculture Statistics.MATHGoogle Scholar

Copyright information

© Grace Scientific Publishing 2015

Authors and Affiliations

  1. 1.Department of Applied MathematicsIndian School of MinesDhanbadIndia

Personalised recommendations