Advertisement

Journal of Statistical Theory and Practice

, Volume 9, Issue 2, pp 419–435 | Cite as

Supersaturated Designs with the Maximum Number of Factors for a Given Resolution-Rank

  • Alex J. Gutman
  • Dursun A. Bulutoglu
  • Edward D. White
Article

Abstract

This article introduces new balanced two-level supersaturated designs with a large number of factors for a given resolution-rank, a criterion that directly assesses a supersaturated design’s ability to detect active factors. The search for supersaturated designs with the largest possible number of factors for a given resolution-rank is implemented by binary integer programming and exhaustive search that exploits design equivalence. We explore supersaturated designs with n = 6, 8, 10, and 12 runs. Six designs have been shown to have the maximum number of columns, and six new designs with improved resolution rank are found.

Keywords

Design equivalence Minimal dependent sets Set-covering 

AMS Subject Classification

62K15 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Booth, K., and D. R. Cox. 1962. Some systematic supersaturated designs. Technometrics, 4(4), 489–495.MathSciNetCrossRefGoogle Scholar
  2. Box, G. E. P., and R. D. Meyer. 1986. An analysis for unreplicated fractional factorials. Technometrics, 28(1), 11–18.MathSciNetCrossRefGoogle Scholar
  3. Bulutoglu, D. A., and C. S. Cheng. 2004. Construction of E(s2)-optimal supersaturated designs. Ann. Stat., 32(4), 1662–1678.CrossRefGoogle Scholar
  4. Deng, L. Y., D. K. J. Lin, and J. Wang. 1996. Marginally oversaturated designs. Commun. Stat. Theory Methods, 25(11), 2557–2573.MathSciNetCrossRefGoogle Scholar
  5. Deng, L. Y., D. K. J. Lin, and J. Wang. 1999. A resolution rank criterion for supersaturated designs. Stat. Sinica, 9, 605–610.MathSciNetzbMATHGoogle Scholar
  6. Ghosh, S., and D. Avila. 1985. Some new factor screening designs using the search linear model. J. Stat. Plan. Inference, 11(2), 259–266.MathSciNetCrossRefGoogle Scholar
  7. Jones, B. A., W. Li, C. J. Nachtsheim, and K. Q. Ye. 2009. Model-robust supersaturated and partially supersaturated designs. J. Stat. Plan. Inference, 139(1), 45–53.MathSciNetCrossRefGoogle Scholar
  8. Khachiyan, L. 1995. On the complexity of approximating extremal determinants in matrices. Journal of Complexity, 11(1), 138–153.MathSciNetCrossRefGoogle Scholar
  9. Li, W., and C. Nachtsheim. 2000. Model-robust factorial designs. Technometrics, 42(4), 345–352.CrossRefGoogle Scholar
  10. Lin, D. K. J. 1993. A new class of supersaturated designs. Technometrics, 35(1), 28–31.CrossRefGoogle Scholar
  11. McKay, B. D. 1979. Hadamard equivalence via graph isomorphism. Discrete Mathematics, 27, 213–214.MathSciNetCrossRefGoogle Scholar
  12. McKay, B. D., and A. Piperno. 2013. Nauty and Traces user’s guide (Version 2.5). Computer Science Department, Australian National University, Canberra, Australia.Google Scholar
  13. Miller, A., and B. Tang. 2012. Minimal dependent sets for evaluating supersaturated designs. Stat. Sinica, 22, 1273–1285.MathSciNetzbMATHGoogle Scholar
  14. Miller, A., and B. Tang. 2013. Finding MDS-optimal supersaturated designs using computer searches. J. Stat. Theory Pract., 7(4), 703–712.MathSciNetCrossRefGoogle Scholar
  15. Morgan, J., S. Ghosh, and A. Dean. 2012. J.N. Srivastava and experimental design. J. Stat. Plan. Inference, 144, 3–18.MathSciNetCrossRefGoogle Scholar
  16. Nemhauser, G. L. 2012. Column generation for linear and integer programming. Documenta Mathematica, extra volume: optimization stories: 65–73.Google Scholar
  17. Nguyen, N. K. 1996. An algorithmic approach to constructing supersaturated designs. Technometrics, 38(1), 69–73.CrossRefGoogle Scholar
  18. Srivastava, J. 1975. Designs for searching non-negligible effects. In A survey of statistical design and linear models, pp. 507–519. North Holland, Amsterdam: American Elsevier.Google Scholar
  19. Suen, C., and A. Das. 2010. E(s2)-optimal supersaturated designs with odd number of runs. J. Stat. Plan. Inference, 140(6), 1398–1409.CrossRefGoogle Scholar
  20. Tang, B., and C. F. J. Wu. 1997. A method for constructing supersaturated designs and its E(s2) optimality. Can. J. Stat., 25(2), 191–201.CrossRefGoogle Scholar
  21. Wu, C. F. J. 1993. Construction of supersaturated designs through partially aliased interactions. Biometrika, 80(3), 661–669.MathSciNetCrossRefGoogle Scholar

Copyright information

© Grace Scientific Publishing 2015

Authors and Affiliations

  • Alex J. Gutman
    • 1
  • Dursun A. Bulutoglu
    • 1
  • Edward D. White
    • 1
  1. 1.Department of Mathematics & StatisticsAir Force Institute of TechnologyDaytonUSA

Personalised recommendations