Journal of Statistical Theory and Practice

, Volume 9, Issue 1, pp 88–121

# An Extension of the Birnbaum-Saunders Distribution as a Model for Fatigue Failure Due to Multiple Cracks

• Ricardo Leiva
• Rubén Bageta
• Juan Carlos Pina
Article

## Abstract

In this article, we propose an extension of the Birnbaum-Saunders distribution to model the more realistic situations where the fatigue failure time of a material is due to the growth of multiple cracks. Properties of the proposed extended Birnbaum-Saunders (EBS) distribution are discussed; hazard function and the change point of the hazard function of this EBS distribution are derived. Maximum likelihood estimates of the unknown parameters as well as the hazard functions for two special cases of the new EBS distribution are also obtained. Finally, Monte Carlo simulations are carried out to assess the performance of the EBS distribution parameters.

## Keywords

Birnbaum-Saunders distribution Hazard function Maximum likelihood estimates Monte Carlo simulations Multiple cracks

## AMS Subject Classification

Primary 62E15 Secondary 62H12

## References

1. Ahmed, S. E., Castro-Kuriss, C., Flores, E., Leiva, V., and Sanhueza, A. 2010. A truncated version of the Birnbaum-Saunders distribution with an application in financial risk. Pak. J. Stat., 26(1), 293–311.
2. Ahmed, S. E., Budsaba, K., Lisawadi, S., and Volodin, A. I. 2008. Parametric estimation for the Birnbaum-Saunders lifetime distribution based on a new parameterization. Thailand Statistician, 6, 213–240.
3. Apostol, T. M. 1969. Calculus, vol II, 2nd ed. New York, NY: John Wiley & Sons.
4. Arnold, B. C., and Beaver, R. J. 2002. Skewed multivariate models related to hidden truncation and/or selective reporting. Test, 11(1), 7–54.
5. Azzalini, A. 1985. A class of distributions which include the normal. Scand. J. Stat., 12, 171–178.
6. Bhattacharyya, G. K., and Fries, A. 1980. Fatigue failure models—Birnbaum-Saunders vs. inverse Gaussian. IEEE Trans. Reliability, R-31, 439–440.
7. Birnbaum, Z. W., and Saunders, S. C. 1969a. A new family of life distribution. J. Appl. Probability, 6, 319–327.
8. Birnbaum, Z. W., and Saunders, S. C. 1969b. Estimation for a family of life distribuitions with applications to fatigue. J. Appl. Probability, 6, 328–347.
9. Caro-Lopera, F. J., Leiva, V., and Balakrishnan, N. 2012. Connection between the Hadamard and matrix products with an application to matrix-variate Birnbaum-Saunders distributions. J. Multivariate Anal., 104, 126–139.
10. Cordeiro, G. M., and Lemonte, A. J. 2011. The Birnbaum-Saunders distribution: An improved distribution for fatigue life modeling. Comput. Stat. Data Anal., 55, 1445–1461.
11. Desmond, A. F. 1985. Stochastic models of failure in random environments. Can. J. Stat., 13(2), 171–183.
12. Desmond, A. F. 1986. On the relationship between two fatigue-life models. IEEE Trans. Reliability, 35(2), 167–169.
13. Diaz-García, J. A., and Domínguez-Molina, J. R. 2007. A new family of life distributions for dependent data: Estimation, Comput. Stat. Data Anal., 51, 5927–5939.
14. Díaz-García, J. A., and Leiva, V. 2005. A new family of life distributions based on elliptically contoured distributions. J. Stat. Plan. Inference, 128(2), 445–457.
15. Fletcher, H. 1911. A verification of the theory of Brownian movements and a direct determination of the value of NE for gaseous ionization. Phys. Rev., 33, 81–110.Google Scholar
16. Ghodrat, S. 2013. Thermo-mechanical fatigue of compacted graphite iron in diesel engine components. PhD thesis, Delft University of Technology, Delft, The Netherlands.Google Scholar
17. Glaser, R. A. 1980. Bathtub and related failure rate characterization. J. Am. Stat. Assoc., 75, 667–672.
18. Gómez, H. W., Olivares-Pacheco, J. F., and Bolfarine, H. 2009. An extension of the generalized Birnbaum-Saunders distribution. Stat. Prob. Lett., 79, 331–338.
19. Gundlach, R. B. 1983. The effect of alloying elements on the elevated temperature properties of gray irons. Trans. Am. Foundrymen’s Soc., 91, 389–422.Google Scholar
20. Gupta, R. C., and Gupta, R. D. 2004. Generalized skew normal model. Test, 13(2), 501–524.
21. Konstantinowsky, D. 1914. Elektrische ladungen and Brown’sche bewegung sehr kleiner metallteilchen in Gasen. Sitzungsberitcder Kaiserlichen Akademie der Wissenschften, 123, 1697–1752.Google Scholar
22. Kundu, D., Kannan, N., and Balakrishnan, N. 2008. On the hazard function of Birnbaum-Saunders distribution and associated inference. Comput. Stat. Data Anal., 52, 2692–2702.
23. Kundu, D., Balakrishnan, N., and Jamalizadeh, A. 2010. Bivariate Birnbaum-Saunders distribution and associated inference. J. Multivariate Anal., 101, 113–125.
24. Kundu, D., Balakrishnan, N., and Jamalizadeh, A. 2013. Generalized multivariate Birnbaum-Saunders distribution and related inferential issues. J. Multivariate Anal., 116, 230–244.
25. Leiva, V., Sanhueza, A., and Angulo, J. M. 2009. A length-biased version of the Birnbaum-Saunders distribution with application in water quality. Stochastic Environ. Res. Risk Assess., 23, 299–307.
26. Lemonte, A. J., Cribari-Neto, F., and Vasconcellos, K. L. P. 2007. Improved statistical inference for the two-parameter Birnbaum-Saunders distribution. Comput. Stat. Data Anal., 51, 4656–4681.
27. Liu, J. H., Hao, X. Y., Li, G. L., and Liu, G. S. 2002. Microvoid evaluation of ferrite ductile iron under strain. Mater. Lett., 56, 748–755.
28. Mann, N. R., Schafer, R. E., and Singpurwalla, N. D. 1974. Methods for statistical analysis of reliability and life data. New York, NY: John Wiley & Sons.
29. Mittelhammer, R. C., Judge, G. G., and Miller, D. J. 2000. Econometric foundations.New York, NY: Cambridge University Press.
30. Ng, H. K. T., Kundu, D., and Balakrishnan, N. 2003. Modified moment estimation for the two-parameter Birnbaum-Saunders distribution. Comput. Stat. Data Anal., 43, 283–298.
31. Owen, W. J. 2006. A new three parameter extension to the Birnbaum-Saunders distribution. IEEE Trans. Reliability, 55, 475–479.
32. Rundman, K. B. 2001. Cast irons. In Encyclpedia of materials: Science and technology, 1003–1010. New York, NY: Elsevier.
33. Santos-Neto, M., Cysneiros, F. J. A., Leiva, A., and Ahmed, S. E. 2012. On new parameterizations of the Birnbaum-Saunders distribution. Pak. J. Stat., 28(1), 1–26.
34. Self, S. G., and Liang, K. 1987. Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under nonstandard conditions. J. Am. Stat. Assoc., 82(398), 605–610.
35. Vilca, F., and Leiva, V. 2006. A new fatigue life model based on the family of skew-elliptic distributions. Commun. Stat. Theory Methods, 35, 229–244.

## Authors and Affiliations

• Ricardo Leiva
• 1
• 2
Email author
• Rubén Bageta
• 3
• Juan Carlos Pina
• 4
• 5