Advertisement

Journal of Statistical Theory and Practice

, Volume 9, Issue 2, pp 330–360 | Cite as

Comparing Designs Constructed With and Without Priors for Choice Experiments: A Case Study

  • Leonie Burgess
  • Stephanie A. Knox
  • Deborah J. Street
  • Richard Norman
Article

Abstract

This article describes the second stage of an empirical comparison of the performance of designs for a discrete choice experiment. Six designs were chosen to represent the range of construction techniques that are currently popular for choice experiments, with some of the designs incorporating into the design generation process prior knowledge of the parameters gained from the previous stage of this experiment. Each design had 320 respondents, each of whom completed 16 choice sets. The results indicate that efficient designs constructed using several different strategies all identify various types of heterogeneity with similar levels of precision. Specifying the right model to best describe the underlying preferences of respondents in each sample may then become the limiting factor in the estimation of more complex generalized multinomial models, rather than the design per se.

Keywords

MNL model G-MNL model Mixed logit Stated preference experiments 

AMS Subject Classification

62K05 62P20 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bliemer, M., and J. M. Rose. 2011. Experimental design influences on stated choice outputs: An empirical study in air travel choice. Transport. Res. Part A, 45, 63–79.Google Scholar
  2. Bliemer, M., J. M. Rose, and S. Hess. 2009. Approximation of Bayesian efficiency in experimental choice designs. J. Choice Model., 1, 98–127.CrossRefGoogle Scholar
  3. Bunch, D. S., J. J. Louviere, and D. Anderson. 1996. A comparison of experimental design strategies for multinomial logit models: The case of generic attributes. Technical report, University of California, Davis. Available at https://doi.org/faculty.gsm.ucdavis.edu/∼bunch Google Scholar
  4. Burgess, L., and D. J. Street. 2003. Optimal designs for 2k choice experiments. Commun. Stat. Theory Methods, 32, 2185–2206.CrossRefGoogle Scholar
  5. Burgess, L., and D. J. Street. 2005. Optimal designs for choice experiments with asymmetric attributes. J. Stat. Plan. Inference, 134, 288–301.MathSciNetCrossRefGoogle Scholar
  6. Burgess, L., D. J. Street, and N. Wasi. 2011. Comparing designs for choice experiments: A case study. J. Stat. Theory Pract., 5, 25–46.MathSciNetCrossRefGoogle Scholar
  7. Carlsson, F., and P. Martinsson. 2003. Design techniques for stated preference methods in health economics. Health Econ., 12, 281–294.CrossRefGoogle Scholar
  8. Ferrini, S., and R. Scarpa. 2007. Designs with a priori information for nonmarket valuation with choice experiments: A Monte Carlo study. J. Environ. Econ. Manage., 53, 342–363.CrossRefGoogle Scholar
  9. Fiebig, D. G., M. P. Keane, J. Louviere, and N. Wasi. 2010. The generalized multinomial logit model: Accounting for scale and coefficient heterogeneity. Marketing Sci., 29, 393–421.CrossRefGoogle Scholar
  10. Greene, W. H., and D. A. Hensher. 2010. Does scale heterogeneity across individuals matter? An empirical assessment of alternative logit models. Transportation, 37, 413–428.CrossRefGoogle Scholar
  11. Gu, Y., A. Hole, and S. Knox. 2013. Estimating the generalized multinomial logit in stata. Stata J., 13, 382–397.Google Scholar
  12. Huber, J., and K. Zwerina. 1996. The importance of untility balance in efficient choice designs. J. Market. Res., 33, 307–317.CrossRefGoogle Scholar
  13. Kessels, R., P. Goos, B. Jones, and M. Vandebroek. 2011a. Rejoinder: the usefulness of Bayesian optimal designs for discrete choice experiments. Appl. Stochastic Models Business Indu., 27, 197–203.CrossRefGoogle Scholar
  14. Kessels, R., B. Jones, P. Goos, and M. Vandebroek. 2008. Recommendations on the use of Bayesian optimal designs for choice experiments. Qual. Reliability Eng. Int., 24, 737–744.CrossRefGoogle Scholar
  15. Kessels, R., B. Jones, P. Goos, and M. Vandebroek. 2011b. The usefulness of Bayesian optimal designs for discrete choice experiments. Appl. Stochastic Models Business Indu., 27, 173–188.MathSciNetCrossRefGoogle Scholar
  16. Kuhfeld, W. F., 2009. Marketing research methods in SAS. Technical report, SAS Institute, Inc. Available at https://doi.org/support.sas.com/techsup/technote/mr2009.pdfw
  17. Lancsar, E., and J. Louviere. 2008. Conducting discrete choice experiments to inform healthcare decision making: A user’s guide. Pharmacoeconomics, 26, 661–677.CrossRefGoogle Scholar
  18. Louviere, J. J., D. Hensher, and J. Swait. 2000. Stated choice methods: Analysis and application. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
  19. Louviere, J. J., and E. Lancsar. 2009. Choice experiments in health: The good, the bad, the ugly and toward a brighter future. Health Econ., 4, 527–546.Google Scholar
  20. McFadden, D., and K. Train. 2000. Mixed MNL models of discrete response. J. Appl. Econ., 15, 447–470.CrossRefGoogle Scholar
  21. McKenzie, L., J. Cairns, and L. Osman. 2001. Symptom-based outcome measures for asthma: The use of discrete choice methods to assess patient preferences. Health Policy, 57, 193–204.CrossRefGoogle Scholar
  22. Rose, J. M., and M. Bliemer. 2009. Constructing efficient stated choice experimental designs. Transport Rev., 29, 587–617.CrossRefGoogle Scholar
  23. Rose, J. M., A. Collins, M. Bliemer, and D. A. Hensher. 2009. Ngene 1.0 stated choice experiment design software. Sydney, Australia: University of Sydney.Google Scholar
  24. Sándor, Z., and M. Wedel. 2001. Designing conjoint choice experiments using managers’ prior beliefs. J. Market. Res., 38, 430–444.CrossRefGoogle Scholar
  25. Sándor, Z., and M. Wedel. 2005. Heterogeneous conjoint choice designs. J. Market. Res., 42, 210–218.CrossRefGoogle Scholar
  26. Street, D. J., and L. Burgess. 2007. The construction of optimal stated choice experiments: Theory and methods. Hoboken, NJ: Wiley.CrossRefGoogle Scholar
  27. Street, D. J., L. Burgess, and J. J. Louviere. 2005. Quick and easy choice sets: constructing optimal and nearly optimal stated choice experiments. Int. J. Res. Market., 22, 459–470.CrossRefGoogle Scholar
  28. Viney, R., E. Savage, and J. J. Louviere. 2005. Empirical investigation of experimental design properties of discrete choice experiments in health care. Health Econ., 14, 349–362.CrossRefGoogle Scholar
  29. Zwerina, K., J. Huber, and W. Kuhfeld. 1996. A general method for constructing efficient choice designs. Technical report, SAS Institute, Inc. Available at https://doi.org/support.sas.com/resources/papers/tnote/tnotemarketresearch.html

Copyright information

© Grace Scientific Publishing 2015

Authors and Affiliations

  • Leonie Burgess
    • 1
  • Stephanie A. Knox
    • 2
  • Deborah J. Street
    • 1
  • Richard Norman
    • 2
  1. 1.School of Mathematical SciencesUniversity of TechnologySydneyAustralia
  2. 2.Centre for Health Economics Research and EvaluationUniversity of TechnologySydneyAustralia

Personalised recommendations