Advertisement

Journal of Statistical Theory and Practice

, Volume 8, Issue 2, pp 238–259 | Cite as

Comparison of Estimators of the Weibull Distribution

  • Muhammad Akram
  • Aziz Hayat
Article

Abstract

We compare the small sample performance (in terms of bias and root mean squared error) of the L-moment estimator of a three-parameter Weibull distribution with maximum likelihood estimation (MLE), moment estimation (MoE), least-square estimation (LSE), the modified MLE (MMLE), the modified MoE (MMoE), and the maximum product of spacing (MPS). Overall, the LM method has a tendency to perform well as it is almost always close to the best method of estimation. The ML performance is remarkable even at a small sample size of n = 10 when the shape parameter β lies in the [1.5, 4] range. The MPS estimator dominates others when 0.5 ≤ β < 1.5. For large β ≥ 6, MMLE outweighs others in samples of size n ≥ 50, whereas LM is preferred in samples of size n ≤ 20.

Keywords

Weibull distribution Order statistics L-moment estimation Maximum likelihood estimation Methods of moments Maximum product of spacing 

AMS Subject Classification

62F10 62F86 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bartoluccia, A. A., K. P. Singha, A. D. Bartoluccib, and S. Baea. 1999. Applying medical survival data to estimate the three-parameter Weibull distribution by the method of probability-weighted moments. Math. Comput. Simulation, 48, 385–392.CrossRefGoogle Scholar
  2. Cheng, R. C. H., and N. A. K. Amin. 1983. Estimating parameters in continuous univariate distributions with a shifted origin. J. R. Stat. Soc. Ser. B (Methodological), 45(3), 394–403.MathSciNetzbMATHGoogle Scholar
  3. Cohen, A. C., and B. Whitten. 1982. Modified maximum likelihood and modified moment estimators for the three-parameter Weibull distribution. Commun. Stat. Theory Methods, 11(23), 2631–2656.CrossRefGoogle Scholar
  4. Corrado, C. J. 1996. S&P 500 index option tests of Jarrow and Rudd’s approximate option valuation formula. J. Futures Markets, 16, 611–630.CrossRefGoogle Scholar
  5. Corrado, C. J., and T. Su. 1996. Skewness and kurtosis in S&P 500 index returns implied by option prices. J. Financial Res., 19, 175–192.CrossRefGoogle Scholar
  6. Corrado, C. J., and T. Su. 1997. Implied volatility skews and stock index skewness and kurtosis implied by S&P 500 index option prices. J. Derivatives, 4, 8–19.CrossRefGoogle Scholar
  7. David, H. A. and H. N.. Nagaraja, eds. 2003. Order statistics. New York, NY: John Wiley and Sons.zbMATHGoogle Scholar
  8. Goda, Y., M. Kudaka, and H. Kawai. 2010. Incorporation of Weibull distribution in L-moments method for regional frequency analysis of peaks-over-threshold wave heights. In Proc. Inte. Conf. Coastal Engineering. https://doi.org/journals.tdl.org/ICCE/article/viewFile/1154/pdf_42
  9. Green, E. J., F. A. Roesch, A. F. M. Smith, and W. E. Strawderman. 1994. Bayesian estimation for the three-parameter Weibull distribution with tree diameter data. Biometrics, 50, 254–269.CrossRefGoogle Scholar
  10. Greenwood, J. A., J. M. Landwehr, N. C., Matalas, and J. R. Wallis. 1979. Probability weighted moments: Definition and relation to parameters of several distributions expressable in inverse form. Water Resources Res., 15, 1049–1054.CrossRefGoogle Scholar
  11. Hammitt, J. K. 2004. Effects of disease type and latency on the value of mortality risk. J. Risk Uncertainty, 28, 73–95.CrossRefGoogle Scholar
  12. Hosking, J. R. M. 1990. L-moments: Analysis and estimation of distributions using linear combinations of order statistics. J. R. Stat. Soc. Ser. B (Methodological), 52, 105–124.MathSciNetzbMATHGoogle Scholar
  13. Hosking, J. R. M., and J. R. Wallis. 1997. Regional frequency analysis: An approach based on L-moments. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
  14. Hosking, J. R. M., J. R. Wallis, and E. F. Wood. 1985. Estimation of the generalized extreme-value distribution by the method of probability-weighted moments. Technometrics, 27(3), 251–261.MathSciNetCrossRefGoogle Scholar
  15. Jing, D., S. Dedun, Y. Ronfu, and H. Yu. 1989. Expressions relating probability weighted moments to parameters of several distributions inexpressible in inverse form. J. Hydrol., 110, 259–270.CrossRefGoogle Scholar
  16. Johnson, R. A., and J. H. Haskell. 1983. Sampling properties of estimators of a Weibull distribution of use in the lumber industry. Can. J. Stat./Rev. Can. Stat., 11(2), 155–169.zbMATHGoogle Scholar
  17. Ku, P. M., E. L. Anderson, and H. J. Carper. 1972. Some considerations in rolling fatigue evaluation. ASLE Trans., 15, 113–129.CrossRefGoogle Scholar
  18. Lana, X., M. D. Martinez, A. Burgueno, and C. Sorraa. 2008. Return period maps of dry spells for Catalonia. Hydrol. Sci. J., 53(1), 48–64.CrossRefGoogle Scholar
  19. Lieblein, J., and M. Zelen. 1956. Statistical investigation of the fatigue life of deep-groove ball bearings. J. Res. Nat. Bureau Standards, 47, 273–316.CrossRefGoogle Scholar
  20. Lloyd, N. S. 1967. Weibull probability paper. Ind. Qua. Control, 23, 452–453.Google Scholar
  21. McCool, J. I. 1998. Inference on the Weibull location parameter. J. Qual. Technol., 30, 119–126.CrossRefGoogle Scholar
  22. Rockette, H., C. Antle, and L. A. Klimko. 1974. Maximum likelihood estimation with the Weibull model. J. Am. Stat. Assoc., 69(345), 246–249.CrossRefGoogle Scholar
  23. Smith, R. L. 1985. Maximum likelihood estimation in a class of nonregular cases. Biometrika, 72(1), 67–90.MathSciNetCrossRefGoogle Scholar
  24. Smith, R. L., and J. C. Naylor. 1987. A comparison of maximum likelihood and Bayesian estimators for the three-parameter Weibull distribution. J. R. Stat. Soc. Ser. C (Appl. Stat.), 36, 358–369.MathSciNetGoogle Scholar
  25. Thoman, D. R., L. J. Bain, and C. E. Antle. 1969. Inference on the parameters of the Weibull distribution. Technometrics, 11, 445–460.MathSciNetCrossRefGoogle Scholar
  26. Weibull, W. 1951. A statistical distribution function of wide applicability. AMSE J. Appl. Mech., 18, 292–297.zbMATHGoogle Scholar
  27. Zanakis, S. H. 1979. Extended pattern search with transformations for the three-parameter Weibull MLE problem. Manage. Sci., 25, 1149–1161.CrossRefGoogle Scholar

Copyright information

© Grace Scientific Publishing 2014

Authors and Affiliations

  1. 1.Department of Epidemiology and Preventive MedicineMonash UniversityMelbourneAustralia
  2. 2.School of Accounting, Economics, 2nd FinanceDeakin UniversityMelbourneAustralia

Personalised recommendations