Journal of Statistical Theory and Practice

, Volume 8, Issue 2, pp 176–191 | Cite as

A Spatial Scan Statistic on Trends



Spatial scan statistics have been widely researched for detecting geographic clusters of heterogeneous rates. This article explores a relevant field of detecting clusters of different relationships of quantities, for instance, trends of logarithmic values of age-adjusted rates over a period of time. The proposed method distinguishes itself by detecting geographic clusters with higher trends of rates. A typical problem is whether the curves of logarithmic values of age-adjusted rates of geographic units are parallel (i.e., have the same slopes or trends). If not, then where are the clusters with higher trends? A likelihood ratio is employed for deriving a spatial scan statistic that is proposed for (1) evaluation of global geographic heterogeneity of trends and (2) detecting clusters of high trends. The method is illustrated on trends of cancer mortality rates of states in the United States. The data used in this article are publicly available at


Spatial scan statistic Trend Linear regression model Likelihood ratio Heterogeneity Geographic unit Cluster detection 

AMS Classification

62H11 62H30 65C60 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bellman, R., and R. Roth. 1969. Curve fitting by segmented straight lines. J. Am. Stat. Assoc., 64, 1079–1084.MathSciNetCrossRefGoogle Scholar
  2. Besag, J., and J. Newell. 1991. The detection of clusters in rare diseases. J. R. Stat. Soc. Ser. A, 154, 143–155.CrossRefGoogle Scholar
  3. Boos, D. D., and J. Zhang. 2000. Monte Carlo evaluation of resampling-based hypothesis tests. J. Am. Stat. Assoc., 95, 486–492.CrossRefGoogle Scholar
  4. Cook, A., D. Gold, and Y. Li. 2007. Spatial cluster detection for censored outcome data. Biometrics 63, 540–549.MathSciNetCrossRefGoogle Scholar
  5. Cuzick, J., and R. Edwards. 1990. Spatial clustering for inhomogeneous populations (with discussion). J. R. Stat. Soc. Ser. B, 52(1), 73–104.zbMATHGoogle Scholar
  6. Duczmal, L., and R. Assunçäo. 2004. A simulated annealing strategy for the detection of arbitrarily shaped spatial clusters. Comput. Stat. Data Anal., 45, 269–286.MathSciNetCrossRefGoogle Scholar
  7. Hawkins, D. M. 2001. Fitting multiple change-point models to data. Comput. Stat. Data Anal., 37, 323–341.MathSciNetCrossRefGoogle Scholar
  8. Huang, L., M. Kulldorff, D. Gregorio. 2007. A spatial scan statistic for survival data. Biometrics, 63, 109–118.MathSciNetCrossRefGoogle Scholar
  9. Huang, L., L. Pickle, and B. Das. 2008. Evaluating spatial methods for investigating global clustering and cluster detection of cancer cases. Stat. Med., 27, 5111–5142.MathSciNetCrossRefGoogle Scholar
  10. Huang, L., R. C. Tiwari, Z. Zou, M. Kulldorff, and E. J. Feuer. 2009. Weighted normal spatial scan statistic for heterogeneous population data. J. Am. Stat. Assoc., 104(487), 886–898.MathSciNetCrossRefGoogle Scholar
  11. Hudson, D. J. 1966. Fitting segmented curves whose join points have to be estimated. J. Am. Stat. Assoc., 61, 1097–1129.MathSciNetCrossRefGoogle Scholar
  12. Jackson, M., L. Huang, J. Luo, M. Hachey, and E. J. Feuer. 2009. Comparison of tests for spatial heterogeneity on data with global clustering patterns and outliers. Int. J. Health Geogr., 8, 55.CrossRefGoogle Scholar
  13. Jackson, M., L. Huang, Q. Xie, and R. Tiwari. 2010. A modified version of Moran’s I. Int. J. Health Geogr., 9, 33.CrossRefGoogle Scholar
  14. Jung, I. 2009. A generalized linear models approach to spatial scan statistics for covariate adjustment. Stat. Med., 28, 1131–1143.MathSciNetCrossRefGoogle Scholar
  15. Kim, H., M. Fay, B. Yu, M. Barrett, and E. Feuer. 2004. Comparability of segmented line regression models. Biometrics, 60, 1005–1014.MathSciNetCrossRefGoogle Scholar
  16. Kim, H.-J., M. Fay, E. Feuer, and D. Midthune. 2000. Permutation tests for joinpoint regression with applications to cancer rates. Stat. Med., 19, 335–351.CrossRefGoogle Scholar
  17. Kim, H.-J., B. Yu, and E. Feuer. 2008. Inference in segmented line regression: A simulation study. J. Stat. Comput. Simulation, 78, 1087–1103.MathSciNetCrossRefGoogle Scholar
  18. Kulldorff, M. 1997. A spatial scan statistic. Commun. Stat. Theory Methods, 26, 1481–1496.MathSciNetCrossRefGoogle Scholar
  19. Kulldorff, M., L. Huang, K. Konty. 2009. A scan statistic for continuous data based on the normal probability model. Int. J. Health Geogra., 8, 58.CrossRefGoogle Scholar
  20. Kulldorff, M., L. Huang, L. Pickle, L. Duczmal. 2006. An elliptic spatial scan statistic. Stat. Med., 25(22), 3929–3943.MathSciNetCrossRefGoogle Scholar
  21. Kulldorff, M., N. Nagarwalla. 1995. Spatial disease clusters: Detection and inference. Stat. Med., 14, 799–810.CrossRefGoogle Scholar
  22. Lerman, P. M. 1980. Fitting segmented regression models by grid search. App. Stat., 29, 77–84.CrossRefGoogle Scholar
  23. Luo, J., L. Huang, M. Hachey, and R. Tiwari. 2009. Adjacency method for finding connected subsets of a graph: An application of graph theory to spatial statistics. Commun. Stat. Simulation Comput., 38(5), 1136–1151.MathSciNetCrossRefGoogle Scholar
  24. Moran, P. 1950. Notes on continuous stochastic phenomena. Biometrika, 37, 17–23.MathSciNetCrossRefGoogle Scholar
  25. Oden, N. 1995. Adjusting Moran’s I for population density. Stat. Med., 14(1), 17–26.CrossRefGoogle Scholar
  26. Patil, G., and C. Taillie. 2004. Upper level set scan statistic for detecting arbitrarily shaped hotspots. Environ. Ecol. Stat., 11, 183–197.MathSciNetCrossRefGoogle Scholar
  27. Paula, G. 1993. Assessing local influence in restricted regression models. Comput. Stat. Data Anal., 16, 63–79.MathSciNetCrossRefGoogle Scholar
  28. Paula, G. 1999. Leverage in inequality-constrained regression models. Statistician, 48(part 4), 529–538.Google Scholar
  29. Stoica, R., E. Gay, and A. Kretzschmar. 2007. Cluster pattern detection in spatial data based on Monte Carlo inference. Biometr. J., 49, 505–519.MathSciNetCrossRefGoogle Scholar
  30. Tango, T. 1995. A class of tests for detecting ‘general’ and ‘focused’ clustering of rare diseases. Stat. Med., 14, 2323–2334.CrossRefGoogle Scholar
  31. Tango, T. 2000. A test for spatial disease clustering adjusted for multiple testing. Stat. Med., 19, 191–204.CrossRefGoogle Scholar
  32. Tango, T. 2007. A class of multiplicity adjusted tests for spatial clustering based on case-control point data. Biometrics, 63, 119–127.MathSciNetCrossRefGoogle Scholar
  33. Tango, T., and K. Takahashi. 2005. A flexibly shaped spatial scan statistic for detecting clusters. Int. J. Health Geogr., 4, 1–15.CrossRefGoogle Scholar
  34. Theil, H., and C. Panne. 1960. Quadratic programming as an extension of classical quadratic maximization. Manage. Sci., 7, 1–20.MathSciNetCrossRefGoogle Scholar
  35. Turnbull, G., E. Iwano, W. Burnett, H. Howe, and L. Clark. 1990. Monitoring for clusters of disease: Application to leukemia incidence in upstate New York. Am. J. Epidemiol., 132, 136–143.CrossRefGoogle Scholar

Copyright information

© Grace Scientific Publishing 2014

Authors and Affiliations

  1. 1.DigitCompass LLCEllicott CityUSA

Personalised recommendations