Advertisement

Journal of Statistical Theory and Practice

, Volume 8, Issue 2, pp 166–175 | Cite as

Asymptotic Normality of the Optimal Solution in Response Surface Methodology

  • José A. Díaz-García
  • José E. Rodríguez
  • Rogelio Ramos-Quiroga
Article

Abstract

Sensitivity analysis of the optimal solution in response surface methodology is studied and an explicit form of the effect of perturbation of the regression coefficients on the optimal solution is obtained. The characterization of the critical point of the convex program corresponding to the optimum of a response surface model is also studied. The asymptotic normality of the optimal solution follows by standard methods.

Keywords

Asymptotic normality Response surface methodology Sensitivity analysis Mathematical programming 

AMS Subject Classification: Primary

62K20 90C25 90C31 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aitchison, J., and S. D. Silvey. 1958. Maximum likelihoocl estimation of parameters subject to restraints. Ann. Mathe. Stat., 29, 813–828.CrossRefGoogle Scholar
  2. Gigelow, J. H., and N. Z. Shapiro. 1974. Implicit function theorem for mathematical programming and for systems of iniqualities. Math. Program., 6(2), 141–156.Google Scholar
  3. Bishop, Y. M. M., S. E. Finberg, and P. W. Holland. 1991. Discrete multivariate analysis: Theory and practice. Cambridge, MA: MIT Press.Google Scholar
  4. Chatterjee, S., and A. S. Hadi. 1988. Sensitivity analysis in linear regression. New York, NY: John Wiley.CrossRefGoogle Scholar
  5. Cramér, H. 1946. Mathematical methods of statistics. Princeton, NJ: Princeton University Press.zbMATHGoogle Scholar
  6. Díaz García, J. A., and R. Ramos-Quiroga. 2001. An approach to optimization in response surfaces. Comm. Stat. Part A Theory Methods, 30, 827–835.MathSciNetCrossRefGoogle Scholar
  7. Díaz García, J. A., and R. Ramos-Quiroga. 2002. Erratum. An approach to optimization in response surfaces. Comm. Stat. Part A Theory Methods, 31, 161.CrossRefGoogle Scholar
  8. Dupačová, J. 1984. Stability in stochastic programming with recourse-estimated parameters. Math. Prog., 28, 72–83.MathSciNetCrossRefGoogle Scholar
  9. Fiacco, A. V., and A. Ghaemi. 1982. Sensitivity analysis of a nonlinear structural design problem. Comp. Operations. Res., 9(1), 29–55.CrossRefGoogle Scholar
  10. Jagannathan, R. 1977. Minimax procedure for a class of linear programs under uncertainty. Operations. Res., 25, 173–177.MathSciNetCrossRefGoogle Scholar
  11. Khuri, A. I., and J. A. Cornell. 1987. Response surfaces: Designs and analyses. New York, NY: Marcel Dekker.zbMATHGoogle Scholar
  12. Myers, R. H., D. C. Montgomery, and C. M. Anderson-Cook. 2009. Response surface methodology: Process and product optimization using designed experiments, 3rd ed. New York, NY: Wiley.zbMATHGoogle Scholar
  13. Rao, C. R. 1973. Linear statistical inference and its applications, 2nd ed. New York, NY: John Wiley & Sons.CrossRefGoogle Scholar
  14. Rao, S. S. 1979. Optimization theory and applications. New Delhi, India: Wiley Eastern Limited.zbMATHGoogle Scholar

Copyright information

© Grace Scientific Publishing 2014

Authors and Affiliations

  • José A. Díaz-García
    • 1
    • 2
  • José E. Rodríguez
    • 2
  • Rogelio Ramos-Quiroga
    • 3
  1. 1.Department of Statistics and ComputationUniversidad Autónoma Agraria Antonio NarroSaltilloMéxico
  2. 2.Department of MathematicsUniversity of GuanajuatoGuanajuatoMéxico
  3. 3.Department of Probability and StatisticsCentro de Investigación en MatemáicasGuanajuatoMéxico

Personalised recommendations