The Marshall-Olkin Family of Distributions: Mathematical Properties and New Models
Article
First Online:
- 2 Downloads
Abstract
Marshall and Olkin (1997) introduced a general method for obtaining more flexible distributions by adding a new parameter to an existing one, called the Marshall-Olkin family of distributions. In this article, we provide a comprehensive treatment of general mathematical and statistical properties of this family of distributions. Moreover, we propose three new distributions on the basis of the Marshall-Olkin scheme. We discuss maximum likelihood estimation with censored data and provide the observed information matrix. The usefulness of the new family is illustrated by means of an application to real data.
Keywords
Marshall-Olkin family Maximum likelihood estimation Mean deviation Moment Rényi entropyPreview
Unable to display preview. Download preview PDF.
References
- Bebbington, M., C. D. Lai, and R. Zitikis. 2007. A flexible Weibull extension. Reliability Eng. System Safety, 92, 719–726.CrossRefGoogle Scholar
- Bjerkedal, T. 1960. Acquisition of resistance in guinea pigs infected with different doses of virulent tubercle bacilli. Am. J. Hyg., 72, 130–148.Google Scholar
- Caroni, C. 2010. Testing for the Marshall-Olkin extended form of the Weibull distribution. Stat. Papers, 51, 325–336.MathSciNetCrossRefGoogle Scholar
- Chen, Z. 2000. A new two-parameter lifetime distribution with bathtub shape or increasing failure rate function. Stat. Prob. Lett., 49, 155–162.MathSciNetCrossRefGoogle Scholar
- Chen, G., and N. Balakrishnan. 1995. A general purpose approximate goodness-of-fit test. J. Quality Technol., 27, 154–161.CrossRefGoogle Scholar
- Cordeiro, G. M., and A. J. Lemonte. 2013. On the Marshall-Olkin extended Weibull distribution. Stat. Papers, 54, 333–353.MathSciNetCrossRefGoogle Scholar
- Doornik, J. A. 2009. An object-oriented matrix language—Ox 6. London, UK: Timberlake Consultants Press.Google Scholar
- Economou, P., and C. Caroni. 2007. Parametric proportional odds frailty models. Commun. Stat. Simulation Comput., 36, 579–592.MathSciNetCrossRefGoogle Scholar
- Eugene, N., C. Lee, and F. Famoye. 2002. Beta-normal distribution and its applications. Commun. Stat. Theory Methods, 31, 497–512.MathSciNetCrossRefGoogle Scholar
- García, V. J., E. Gómez-Déniz, and F. J. Vázquez-Polo. 2010. A new skew generalization of the normal distribution: Properties and applications. Comput. Stat. Data Anal., 54, 2021–2034.MathSciNetCrossRefGoogle Scholar
- Ghitany, M. E. 2005. Marshall-Olkin extended Pareto distribution and its application. Int. J. Appl. Math., 18, 17–32.MathSciNetzbMATHGoogle Scholar
- Ghitany, M. E., F. A. Al-Awadhi, and L. A. Alkhalfan. 2007. Marshall-Olkin extended Lomax distribution and its application to censored data. Commun. Stat. Theory Methods, 36, 1855–1866.MathSciNetCrossRefGoogle Scholar
- Ghitany, M. E., E. K. Al-Hussaini, and R. A. AlJarallah. 2005. Marshall-Olkin extended Weibull distribution and its application to censored data. J. Appl. Stat., 32, 1025–1034.MathSciNetCrossRefGoogle Scholar
- Ghitany, M. E., and S. Kotz. 2007. Reliability properties of extended linear failure-rate distributions. Prob. Eng. Informational Sci., 21, 441–450.MathSciNetCrossRefGoogle Scholar
- Gómez-Déniz, E. 2010. Another generalization of the geometric distribution. Test, 19, 399–415.MathSciNetCrossRefGoogle Scholar
- Gupta, R. C., N. Kannan, and A. RayChoudhuri. 1997. Analysis of log-normal survival data. Math. Biosci., 139, 103–115.CrossRefGoogle Scholar
- Gupta, R. D., and D. Kundu. 1999. Generalized exponential distributions. Austr. N. Z. J. Stat., 41, 173–188.MathSciNetCrossRefGoogle Scholar
- Gupta, R. C., S. Lvin, and C. Peng. 2010. Estimating turning points of the failure rate of the extended Weibull distribution. Comput. Stat. Data Anal., 54, 924–934.MathSciNetCrossRefGoogle Scholar
- Gupta, R. D., and C. Peng. 2009. Estimating reliability in proportional odds ratio models. Comput. Stat. Data Anal., 53, 1495–1510.MathSciNetCrossRefGoogle Scholar
- Hansen, B. E. 1994. Autoregressive conditional density estimation. Int. Econ. Rev., 35, 705–730.CrossRefGoogle Scholar
- Kenney, J. F., and E. S. Keeping. 1962. Mathematics of statistics, Part 1, 3rd ed., 101–102. Princeton, NJ: Princeton University.Google Scholar
- Kundu, D., N. Kannan, and N. Balakrishnan. 2008. On the hazard function of Birnbaum-Saunders distribution and associated inference. Comput. Stat. Data Anal., 52, 2692–2702.MathSciNetCrossRefGoogle Scholar
- Lam, K. F., and T. L. Leung. 2001. Marginal likelihood estimation for proportional odds models with right censored data. Lifetime Data Anal., 7, 39–54.MathSciNetCrossRefGoogle Scholar
- Lemonte, A. J. 2013a. A new extension of the Birnbaum-Saunders distribution. Braz. J. Prob. Stat., 27, 133–149.MathSciNetCrossRefGoogle Scholar
- Lemonte, A. J. 2013b. A new exponential-type distribution with constant, decreasing, increasing, upside-down bathtub and bathtub-shaped failure rate function. Comput. Stat. Data Anal., 62, 149–170.MathSciNetCrossRefGoogle Scholar
- Lemonte, A. J., W. Barreto-Souza, and G. M. Cordeiro. 2013. The exponentiated Kumaraswamy distribution and its log-transform. Braz. J. Prob. Stat., 27, 31–53.MathSciNetCrossRefGoogle Scholar
- Lemonte, A. J., and G. M. Cordeiro. 2011. The exponentiated generalized inverse Gaussian distribution. Stat. Prob. Lett., 81, 506–517.MathSciNetCrossRefGoogle Scholar
- Maiti, S. S., and M. Dey. 2012. Tilted normal distribution and its survival properties. J. Data Sci., 10, 225–240.MathSciNetGoogle Scholar
- Marshall, A. W., and I. Olkin. 1997. A new method for adding a parameter to a family of distributions with application to the exponential and Weibull families. Biometrika, 84, 641–652.MathSciNetCrossRefGoogle Scholar
- Marshall, A. W., and I. Olkin. 2007. Life distributions. Structure of nonparametric, semiparametric and parametric families. New York, NY: Springer.zbMATHGoogle Scholar
- Moors, J. J. A. 1998. A quantile alternative for kurtosis. J. R. Stat. Soc. D, 37, 25–32.Google Scholar
- Mudholkar, G. S., D. K. Srivastava, and M. Freimer. 1995. The exponentiated Weibull family. Technometrics, 37, 436–445.CrossRefGoogle Scholar
- Nadarajah, S., and S. Kotz. 2006. The exponentiated type distributions. Acta Appl. Math., 92, 97–111.MathSciNetCrossRefGoogle Scholar
- Nanda, A. K., and S. Das. 2012. Stochastic orders of the Marshall-Olkin extended distribution. Stat. Prob. Lett., 82, 295–302.MathSciNetCrossRefGoogle Scholar
- Prudnikov, A. P., Y. A. Brychkov, and O. I. Marichev. 1986. Integrals and series, vol. 1–3. Amsterdam, The Netherlands: Gordon and Breach.zbMATHGoogle Scholar
- R Development Core Team. 2012. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.Google Scholar
- Rao, G. S., M. E. Ghitany, and R. R. L. Kantam. 2011. An economic reliability test plan for Marshall-Olkin extended exponential distribution. Appl. Math. Sci., 5, 103–112.MathSciNetzbMATHGoogle Scholar
- Ristić, M. M., K. K Jose, and J. Ancy. 2007. A Marshall-Olkin gamma distribution and minification process. STARS, 11, 107–117.Google Scholar
- Rubio, F. J., and M. F. J. Steel. 2012. On the Marshall-Olkin transformation as a skewing mechanism. Comput. Stat. Data Anal., 56, 2251–2257.MathSciNetCrossRefGoogle Scholar
- Song, K. S. 2001. Rényi information, loglikelihood and an intrinsic distribution measure. J. Stat. Plan. Inference, 93, 51–69.CrossRefGoogle Scholar
- Xie, M., Y. Tang, and T. N. Goh. 2002. A modified Weibull extension with bathtub-shaped failure rate function. Reliability Eng. System Safety, 76, 279–285.CrossRefGoogle Scholar
- Zhang, T., and M. Xie. 2007. Failure data analysis with extended Weibull distribution. Commun. Stat. Simulation Comput., 36, 579–592.MathSciNetCrossRefGoogle Scholar
Copyright information
© Grace Scientific Publishing 2014