Journal of Statistical Theory and Practice

, Volume 8, Issue 3, pp 423–438 | Cite as

Estimation of Optimal Portfolio Weights Under Parameter Uncertainty and User-Specified Constraints: A Perturbation Method

  • Christopher J. BennettEmail author
  • Ričardas Zitikis


We propose a novel methodology for constructing optimal portfolios in the presence of (i) model parameter uncertainty and (ii) user-specified constraints on the portfolio weights. This is a challenging problem, in large part because the constraint conditions generally preclude the derivation of closed-form solutions even in the absence of parameter uncertainty. Yet, in this article, we succeed in producing a practical solution, which is based on a herein proposed technique that we call a “perturbation method.” The method relies on a specially devised resampling procedure, whose performance is shown in simulations to compare favorably to other methods from the literature on portfolio optimization.


Portfolio selection Optimization Risk Bootstrap Resampling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adcock, C. J. 2010. Asset pricing and portfolio selection based on the multivariate extended skew-Student-t distribution. Ann. Operations Res., 176, 221–234.MathSciNetCrossRefGoogle Scholar
  2. Bennett, C. J. 2013. Estimating optimal decision rules in the presence of model parameter uncertainty. J. Financial Econometrics, 11, 47–75.CrossRefGoogle Scholar
  3. Brandt, M. W. 2010. Portfolio choice problems, In Handbook of financial econometrics, Vol. 1, Tools and Techniques, ed. Y. Ait-Sahalia and L. P. Hansen, 269–336. Amsterdam, The Netherlands: North Holland.CrossRefGoogle Scholar
  4. Brandt, M. W., P. Santa-Clara, and R. Valkanov. 2009. Parametric portfolio policies: Exploiting characteristics in the cross-section of equity returns. Rev. Financial Stud., 22(9), 3411–3447.CrossRefGoogle Scholar
  5. Harvey, C. R., J. C. Leichty, M. W. Leichty, and P. Muller. 2010. Portfolio selection with higher moments. Quant. Finance, 10, 469–485.MathSciNetCrossRefGoogle Scholar
  6. Kan, R., and G. Zhou. 2007. Optimal portfolio choice with parameter uncertainty. J. Financial Quant. Anal., 42, 621–656.CrossRefGoogle Scholar
  7. Kandel, S., and R. F. Stambaugh. 1996. On the predictability of stock returns: An asset-allocation perspective. J. Finance, 51, 385–424.CrossRefGoogle Scholar
  8. Krokhmal, P., M. Zabarankin, and S. Uryasev. 2011. Modeling and optimization of risk. Surveys Operations Res. Manage. Sci., 16, 49–66.CrossRefGoogle Scholar
  9. Markowitz, H. 1952. Portfolio selection. J. Finance, 7, 77–91.Google Scholar
  10. Markowitz, H. M., and N. Usmen. 2003. Resampled frontiers versus diffuse Bayes: An experiment. J. Invest. Manage., 1, 9–25.Google Scholar
  11. McCulloch, R., and P. E. Rossi. 1990. Posterior, predictive, and utility-based approaches to testing the arbitrage pricing theory. J. Financial Econ., 28, 7–38.CrossRefGoogle Scholar
  12. Michaud, R. 1998. Efficient assset management: A practial guide to stock portfolio optimization. Boston, MA: Harvard Business School Press.Google Scholar
  13. Pástor, L̆., and R. F. Stambaugh. 2000. Comparing asset pricing models: an investment perspective. J. Financial Econ., 56, 335–381.CrossRefGoogle Scholar
  14. Pflug, G. C., and W. Römisch. 2007. Modeling, measuring and managing risk. Singapore: World Scientific.CrossRefGoogle Scholar
  15. Rachev, S. T., S. V. Stoyanov, and F. J. Fabozzi. 2008. Advanced stochastic models, risk assessment, and portfolio optimization: The ideal risk, uncertainty, and performance measures. Hoboken, NJ: Wiley.Google Scholar
  16. Scherer, B. 2010. Portfolio construction and risk budgeting, 4th ed. London, UK: Risk Books.zbMATHGoogle Scholar

Copyright information

© Grace Scientific Publishing 2014

Authors and Affiliations

  1. 1.Department of EconomicsVanderbilt UniversityNashvilleUSA
  2. 2.Department of Statistical and Actuarial SciencesUniversity of Western OntarioLondonCanada

Personalised recommendations