Advertisement

Journal of Statistical Theory and Practice

, Volume 7, Issue 3, pp 496–504 | Cite as

Revisit Kaplan-Meier Estimator in Estimating QAL Survival Distributions

Article

Abstract

Quality-adjusted lifetime (QAL) is an important component in evaluation of clinical trials. In a seminal paper, Gelber et al. (1989) claimed that the Kaplan-Meier estimator is inconsistent in estimating the distribution of QAL under the presence of censoring. However, in this article, we show that, with appropriate censoring indexing, the Kaplan-Meier estimator actually is consistent in some practically important QAL data settings.

Keywords

Kaplan-Meier estimator Quality-adjusted lifetime Survival analysis Zhao-Tsiatis estimator 

MSC

Primary 62N02 Secondary 62G05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bracewell, R. 2000. The impulse symbol. Ch. 5 In The Fourier transform and its applications, 3rd ed., 74–104. New York: McGraw-Hill.Google Scholar
  2. Cole, B. F., R. D. Gelber, S. Gelber, and P. Mukhopadhyay. 2004. A quality-adjusted survival (Q-TWiST) model for evaluating treatments for advanced stage cancer. J. Biopharm. Stat. 14, 111–124.MathSciNetCrossRefGoogle Scholar
  3. Gao, F., J. Wee, H. B. Wong, and D. Machin. 2010. Quality-of-life-adjusted survival analysis of concurrent chemo radiotherapy for locally advanced (nonmetastatic) nasopharyngeal cancer. Int. J. Radiat. Oncol. Biol. Phys., 78, 454–460.CrossRefGoogle Scholar
  4. Gelber, R. D., and A. Goldhirsch. 1986. A new endpoint for the assessment of adjuvant therapy in postmenopausal women with operable breast cancer. J. Clin. Oncol., 4, 1772–1779.CrossRefGoogle Scholar
  5. Gelber, R. D., A. Goldhirsch, M. Castiglione, K. Price, M. Isley, and A. Coates. 1987. For the Ludwig breast cancer study group. Time without symptoms and toxicity (TWiST): A quality-of-life-oriented endpoint to evaluate adjuvant therapy. In Adjuvant therapy of cancer V, ed. S. E. Salmon, 379–391. Orlando, FL, Grune & Stratton.Google Scholar
  6. Gelber, R. D., R. S. Gelman, and A. Goldhirsch. 1989. A quality-of-life oriented endpoint for comparing therapies. Biometrics, 45, 781–795.CrossRefGoogle Scholar
  7. Glasziou, P. P., R. J. Simes, and R. D. Gelber. 1990. Quality adjusted survival analysis. Stat. Med., 9, 1259–1276.CrossRefGoogle Scholar
  8. Goldhirsch, A., R. D. Gelber, R. J. Simes, P. Glasziou, and A. Coates. 1989. For the Ludwig breast cancer study group. Costs and benefits of adjuvant therapy in breast cancer: a quality adjusted survival analysis. J. Clin. Oncol., 7, 36–44.CrossRefGoogle Scholar
  9. Huang, Y., and T. A. Louis. 1998. Nonparametric estimation of the joint distribution of survival time and mark variables. Biometrika, 85, 785–798.MathSciNetCrossRefGoogle Scholar
  10. Kaplan, E. L., and P. Meier. 1958. Nonparametric estimation from incomplete observations. J. Am. Stat. Assoc. 53, 457–481.MathSciNetCrossRefGoogle Scholar
  11. Korn, E. L. 1993. On estimating the distribution function for quality of life in cancer clinical trials. Biometrika, 80, 535–540.MathSciNetCrossRefGoogle Scholar
  12. Pradhan, B., A. Dewanji, and D. Sengupta. 2010. Parametric estimation of quality adjusted life-time (QAL) distribution in simple illness-death model. Commun. Stat. Theory Methods 39, 77–93.CrossRefGoogle Scholar
  13. Wellner, J. A. (1982). Asymptotic optimality of the product limit estimator. Ann. Stat., 10, 595–602.MathSciNetCrossRefGoogle Scholar
  14. Zhao, H., and A. A. Tsiatis. 1997. A consistent estimator for the distribution of quality adjusted survival time. Biometrika, 84, 339–348.MathSciNetCrossRefGoogle Scholar
  15. Zhao, H., and A. A. Tsiatis. 1999. Efficient estimator for the distribution of quality-adjusted survival time. Biometrics, 55, 1101–1107.CrossRefGoogle Scholar
  16. Zhao, H., and A. A. Tsiatis. 2000. Estimating mean quality adjusted lifetime with censored data. Sankhya Ser. B Special Issue Biostat., 62, 175–188.MathSciNetMATHGoogle Scholar

Copyright information

© Grace Scientific Publishing 2013

Authors and Affiliations

  1. 1.Department of MathematicsKean UniversityUnionUSA
  2. 2.Department of Mathematical SciencesUniversity of Houston-Clear LakeHoustonUSA

Personalised recommendations