Journal of Statistical Theory and Practice

, Volume 7, Issue 4, pp 650–657 | Cite as

A New Family of Amicable Hadamard Matrices

  • Jennifer SeberryEmail author


We study constructions for amicable Hadamard matrices. The family for orders 2t, t a positive integer, is explicitly exhibited. We also show that there are amicable Hadamard matrices of order (2t - 1)r + 1 for any odd integer r > 1. Now we have orders 15r + 1, 63r + 1, 255r + 1, 511r + 1, …, r > 1 an odd integer, for the first time.


Hadamard matrices Amicable Hadamard matrices Amicable Hadamard cores 

AMS Subject Classification

Primary 05B20 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams S. S., 2009. A journey of discovery: Orthogonal matrices and communications. AMS Contemp. Math. Ser. 479, 1–9.MathSciNetCrossRefGoogle Scholar
  2. Belevitch, V. 1968. Conference networks and Hadamard matrices. Ann. Soc. Sci. Brux., T82, 13–32.MathSciNetzbMATHGoogle Scholar
  3. Belevitch, V. 1950. Theory of 2n-terminal networks with applications to conference telephony, Electr. Commun., 27(3), 231–244.Google Scholar
  4. Delsarte, P., J. M. Goethals, and J. J. Seidel. 1971. Orthogonal matrices with zero diagonal. Can. J. Math., 23, 816–832.MathSciNetCrossRefGoogle Scholar
  5. Djokovic, D. 1992. Skew Hadamard matrices of order 4 × 37 and 4 × 43. J. Combin. Theory Ser. A, 61(2), 319–321.MathSciNetCrossRefGoogle Scholar
  6. Djokovic, D. 2008. Skew-Hadamard matrices of orders 188 and 388 exist. Int. Math. Forum, 3(21–24), 1063–1068.MathSciNetzbMATHGoogle Scholar
  7. Djokovic, D. 2008. Skew-Hadamard matrices of orders 436, 580, and 988 exist. J. Combin. Des. 16(6), 493–498.MathSciNetCrossRefGoogle Scholar
  8. Fletcher, R. J., Koukouvinos, and J. Seberry. 2004. New skew-Hadamard matrices of order 2.59 and new D-optimal designs of order 2.59. Discrete Math., 286(3), 251–253.MathSciNetCrossRefGoogle Scholar
  9. Geramita, A. V., N. J. Pullman, and J. Seberry Wallis. 1974. Families of weighing matrices. Bull. Aust. Math. Soc., 10, 119–122.MathSciNetCrossRefGoogle Scholar
  10. Geramita, A. V., and J. Seberry. 1979. Orthogonal designs: Quadratic forms and Hadamard matrices. Lecture Notes in Pure and Applied Mathematics, New York, NY, Marcel Dekker.zbMATHGoogle Scholar
  11. Goldberg, K. 1966. Hadamard matrices of order cube plus one. Proc. Am. Math. Soc. 17, 744–746.MathSciNetCrossRefGoogle Scholar
  12. Paley, R. E. A. C. 1933. On orthogonal matrices. J. Math. Phys., 12, 311–320.CrossRefGoogle Scholar
  13. Seberry, J., and M. Yamada. 1992. Hadamard matrices, sequences, and block designs. In Contemporary design theory: A collection of surveys, ed. J. H. Dinitz and D. R. Stinson, 431–560. New York, NY, John Wiley and Sons.Google Scholar
  14. Seberry Wallis, J. 1971. Combinatorial matrices. Ph.D. Thesis, La Trobe University, Melbourne, Australia.Google Scholar
  15. Seberry Wallis, J. 1972. Hadamard matrices. In W. D. Wallis, Anne Penfold Street and Jennifer Seberry Wallis, Combinatorics: Room squares, sum-free sets and Hadamard matrices, ed. W. D. Wallis, A. P. Street, and J. Seberry Wallis, Lecture Notes in Mathematics, 128; 273–490. Springer Verlag, Berlin.zbMATHGoogle Scholar
  16. Tarokh, V., H. Jafarkhani, and A. R. Calderbank. 1999. Space-time codes from orthogonal designs. IEEE Trans. Inform. Theory, 45, 1456–1467.MathSciNetCrossRefGoogle Scholar
  17. Turyn, R. J. 1971. C-matrices of arbitrary powers. Bull. Can. Math. Soc., 23, 531–535.MathSciNetzbMATHGoogle Scholar

Copyright information

© Grace Scientific Publishing 2013

Authors and Affiliations

  1. 1.Centre for Computer and Information Security Research, SCSSEUniversity of WollongongWollongongAustralia

Personalised recommendations