Journal of Statistical Theory and Practice

, Volume 7, Issue 4, pp 617–629 | Cite as

Existence of a Maximum Balanced Matching in the Hypercube

  • Gyula O. H. KatonaEmail author
  • Krisztián Tichler


We prove, that for n ≠ 2 the maximum possible [2n/2n] edges can be chosen simultaneously from each parallel class of the n-cube in such a way that no two edges have a common vertex.


Construction Hypercube Matching 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bhat, G. S., and C. D. Savage. 1996. Balanced Gray codes. Electronic J. Combinatorics 3(1), R25.MathSciNetzbMATHGoogle Scholar
  2. Gray, F. 1953. Pulse code communication. U.S Patent No. 2632058, March.Google Scholar
  3. Katona, G. O. H., and K. Tichler. 2013. Search when the lie depends on the target in: Information Theory, Combinatorics, and Search Theory (In Memory of Rudolf Ahlswede) (H. Aydinian, F. Cicalese, Ch. Deppe, Eds.) LNCS, Springer, 648–657.CrossRefGoogle Scholar
  4. Robinson, J., and M. Cohn. 1981. Counting sequences. IEEE Trans. Comput., C-30, 17–23.MathSciNetCrossRefGoogle Scholar
  5. Savage, C. D. 1997. A survey of combinatorial Gray codes. SIAM Rev., 39(4), 605–629.MathSciNetCrossRefGoogle Scholar

Copyright information

© Grace Scientific Publishing 2013

Authors and Affiliations

  1. 1.Rényi InstituteBudapestHungary
  2. 2.Eötvös UniversityBudapestHungary

Personalised recommendations