Advertisement

Journal of Statistical Theory and Practice

, Volume 7, Issue 2, pp 248–258 | Cite as

Propriety Conditions for the Bayesian Autologistic Model—Inference for Histone Modifications

  • Riten MitraEmail author
  • Peter Müller
  • Yuan Ji
Article
  • 1 Downloads

Abstract

Motivated by inference for a set of histone modifications we consider an improper prior for an autologistic model. We state sufficient conditions for posterior propriety under a constant prior on the coefficients of an autologistic model. We use known results for a multinomial logistic regression to prove posterior propriety under the autologistic model. The conditions are easily verified.

Keywords

Autologistic Bayesian Identifiability Propriety 

AMS Classification

6209 62A01 62B05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bernardo, J., J. Berger, A. Dawid, and A. Smith. 1992. On the development of reference priors. Bayesian Statistics, 4, 35–60.MathSciNetGoogle Scholar
  2. Bernstein, B. E., T. S. Mikkelsen, X. Xie, M. Kamal, D. J. Huebert, J. Cuff, B. Fry, A. Meissner, M. Wernig, K. Plath, R. Jaenisch, A. Wagschal, R. Feil, S. L. Schreiber, and E. S. Lander. 2006. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell, 125, 315–326.CrossRefGoogle Scholar
  3. Besag, J. 1974. Spatial interaction and the statistical analysis of lattice systems. J. R. Stat. Soc. Seri. B, 135, 192–236.MathSciNetzbMATHGoogle Scholar
  4. Chen, M., and Q. Shao. 2001. Propriety of posterior distribution for dichotomous quantal response models. Proce. Ame. Mathe. Soci., 129(1), 293–302.MathSciNetCrossRefGoogle Scholar
  5. Heckerman, D., and D. Geiger. 1994. Learning Gaussian networks. Proceedings of Tenth Conference on Uncertainty in Artificial Intelligence, Seattle, WA, 274–284.Google Scholar
  6. Heckerman, D., and D. Geiger. 1995. Learning Bayesian networks: A unification for discrete and Gaussian domains. Proceedings of Eleventh Conference on Uncertainty in Artificial Intelligence, Montreal Quebec, 293–301.Google Scholar
  7. Hobert, J., and G. Casella. 1996. The effect of improper priors on gibbs sampling in hierarchical linear mixed models. J. Am. Stati. Associ., 91, 1461–1473.MathSciNetCrossRefGoogle Scholar
  8. Ibrahim, J., and P. Laud. 1991. On bayesian analysis of generalized linear models using jeffreys’s prior. J. Ame. Stati. Associ., 86, 981–986.MathSciNetCrossRefGoogle Scholar
  9. Maddala, G. (1983). Limited-dependent and qualitative variables in econometrics, vol. 3. Cambridge UK, Cambridge University Press.CrossRefGoogle Scholar
  10. Mitra, R., P. Müller, S. Liang, L. Yue, and Y. Ji. 2011. A bayesian graphical model for chip-seq data on histone modifications. J. Am. Stati. Assoc., Appli. Case Stud. To appear.Google Scholar
  11. Natarajan, R., and C. McCulloch. 1995. A note on the existence of the posterior distribution for a class of mixed models for binomial responses. Biometrika, 82(3), 639–643.MathSciNetCrossRefGoogle Scholar
  12. Schechter, M. (2002). Principles of functional analysis, vol 36. Providence, RI, American Mathematical Society.zbMATHGoogle Scholar
  13. Tie, F., R. Banerjee, C. A. Stratton, J. Prasad-Sinha, V. Stepanik, A. Zlobin, M. O. Diaz, P. C. Scacheri, and P. J. Harte. 2009. CBP-mediated acetylation of histone H3 lysine 27 antagonizes Drosophila Polycomb silencing. Development, 136, 3131–3141.CrossRefGoogle Scholar
  14. Wang, Z., C. Zang, J. A. Rosenfeld, D. E. Schones, A. Barski, S. Cuddapah, K. Cui, T. Y. Roh, W. Peng, M. Q. Zhang, and K. Zhao. 2008. Combinatorial patterns of histone acetylations and methylations in the human genome. Nat. Genet., 40, 897–903.CrossRefGoogle Scholar
  15. Welsh, D. J. A. 1990. The computational complexity of some classical problems from statistical physics. In Disorder in physical systems, 307–321. Oxford, UK, Clarendon Press.Google Scholar
  16. Yu, H., S. Zhu, B. Zhou, H. Xue, and J. D. Han. 2008. Inferring causal relationships among different histone modifications and gene expression. Genome Res., 18, 1314–1324.CrossRefGoogle Scholar
  17. Zellner, A., and P. Rossi. 1984. Bayesian analysis of dichotomous quantal response models. J. Econometrics, 25(3), 365–393.MathSciNetCrossRefGoogle Scholar
  18. Zhang, Y., J. Lv, H. Liu, J. Zhu, J. Su, Q. Wu, Y. Qi, F. Wang, and X. Li. 2010. HHMD: The human histone modification database. Nucleic Acids Res., 38, D149–D154.CrossRefGoogle Scholar

Copyright information

© Grace Scientific Publishing 2013

Authors and Affiliations

  1. 1.ICESUniversity of Texas at Austin, MD Anderson Cancer CenterAustinUSA
  2. 2.Department of MathematicsUniversity of Texas at AustinAustinUSA
  3. 3.Center for Clinical and Research InformaticsNorthShore University Health SystemChicagoUSA

Personalised recommendations