Advertisement

Journal of Statistical Theory and Practice

, Volume 7, Issue 2, pp 219–232 | Cite as

Bayesian Multiple Imputation for Assay Data Subject to Measurement Error

  • Ying Guo
  • Roderick J. LittleEmail author
Article

Abstract

Existing methods for the analysis of data involving assay data subject to measurement error are deficient. In particular, classical calibration methods have been shown to yield invalid inferences unless the measurement error is small. Regression calibration, a form of conditional mean imputation, has better properties, but is not well suited to adjusting for heteroscedastic measurement error. Bayesian multiple imputation is less common for measurement error problems than for missing data, but we argue that it represents an attractive option for measurement error, providing superior inferences to existing methods and a convenient way of adjusting for measurement error using simple complete-data methods and multiple imputation combining rules. It also provides a convenient approach to limit of quantification issues, another area where current approaches are in our view deficient. We review some recent work that develops multiple imputation methods for assay data, focusing particularly on three key aspects: internal versus external calibration designs, the role of the nondifferential measurement error assumption in these designs, and heteroscedastic measurement error. Future research topics are outlined.

Keywords

Assay Calibration data Bayesian methods LOQ Measurement error Multiple imputation 

AMS Subject Classification

Here the AMS Subject Classification http://www.ams.org/msc/ 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Buonaccorsi, J. P. 2010. Measurement error: Models, methods and applications. Boca Raton, FL, Chapman and Hall/CRC.CrossRefGoogle Scholar
  2. Carroll, R. J., K. Roeder, and L. Wasserman. 1999. Flexible parametric measurement error models. Biometrics, 55, 44–54.CrossRefGoogle Scholar
  3. Carroll, R. J., D. Ruppert, L. A. Stefanski, and C. M. Crainiceanu. 2006. Measurement error in nonlinear models: A modern perspective, 2nd ed. Boca Raton, Chapman and Hall/CRC.CrossRefGoogle Scholar
  4. Carroll, R. J., and L. A. Stefanski. 1990. Approximate quasi-likelihood estimation in problems with surrogate predictors. J. Am. Stat. Ass., 85(411), 652–663.CrossRefGoogle Scholar
  5. Chu, H., L. Nie, and T. W. Kensler. 2008. A Bayesian approach estimating treatment effects on biomarkers containing zeros with detection limits. Stat. Med., 27, 2497–2508.MathSciNetCrossRefGoogle Scholar
  6. Cole, S. R., H. Chu, and S. Greenland. 2006. Multiple-imputation for measurement-error correction. Int. J. Epidemiol., 35, 1074–1081.CrossRefGoogle Scholar
  7. Cooper, G. S., D. A. Savitz, R. Millikan, and T. Chiu Kit. 2002. Organochlorine exposure and age at natural menopause. Epidemiology, 13(1), 729–1733.CrossRefGoogle Scholar
  8. Currie, L. A., 1968. Limits for qualitative detection and quantitative determination—Application to radiochemistry. Anal. Chem., 40, 586–592.CrossRefGoogle Scholar
  9. Delaigle, A., and A. Meister. 2008. Density estimation with heteroscedastic error. Bernoulli, 14, 562–579.MathSciNetCrossRefGoogle Scholar
  10. Freedman, L. S., D. Midthune, R. J. Carroll, and V. Kipnis. 2008. A comparison of regression calibration, moment reconstruction and imputation for adjusting for covariate measurement error in regression. Stat. Med., 27, 5195–5216.MathSciNetCrossRefGoogle Scholar
  11. Fuller, W. A. 1987. Measurement error models. New York, NY, Wiley.CrossRefGoogle Scholar
  12. Gelman, A., J. B. Carlin, H. S. Stern, and D. B. Rubin. 2004. Bayesian data analysis, 2nd ed. Boca Raton, FL, Chapman and Hall/CRC.zbMATHGoogle Scholar
  13. Guo, Y., O. Harel, and R. J. A. Little. 2010. How well quantified is the limit of quantification? Epidemiology, 21, S10–S16.CrossRefGoogle Scholar
  14. Guo, Y., and R. J. A. Little, 2011. Regression analysis with covariates that have heteroscedastic measurement error. Stat. Med., 30, 2278–2294.MathSciNetCrossRefGoogle Scholar
  15. Guo, Y., R. J. A. Little, and D. McConnell. 2012. On using summary statistics from an external calibration sample to correct for covariate measurement error. Epidemiology, 23(1), 165–174.CrossRefGoogle Scholar
  16. He, Y., and A. M. Zaslavsky. 2009. Combining information from cancer registry and medical records data to improve analyses of adjuvant cancer therapies. Biometrics, 65, 946–952.MathSciNetCrossRefGoogle Scholar
  17. Helsel, D. R. 2004. Nondetects and data analysis: Statistics for censored environmental data. New York, NY, WileyzbMATHGoogle Scholar
  18. Higgins, K. M., M. Davidian, G. Chew, and H. Burge. 1998. The effect of serial dilution error on calibration inference in immunoassay. Biometrics, 54, 19–32.CrossRefGoogle Scholar
  19. Hossian, S., and P. Gustafson. 2009. Bayesian adjustment for covariate measurement errors: a flexible parametric approach. Stat. Med., 28, 1580–1600.MathSciNetCrossRefGoogle Scholar
  20. Little, R. J. A., and D. B. Rubin. 2002. Statistical analysis with missing data, 2nd ed. New York, NY, Wiley.CrossRefGoogle Scholar
  21. May, R. C., J. G. Ibrahim, and H. Chu. 2011. Maximum likelihood estimation in generalized linear models with multiple covariates subject to dection limits. Stat. Med., 30, 2551–2561.MathSciNetCrossRefGoogle Scholar
  22. Messer, K., and L. Natarajan. 2008. Maximum likelihood, multiple imputation and regression calibration for measurement error adjustment. Stat. Med., 27, 6332–6350.MathSciNetCrossRefGoogle Scholar
  23. Raghunathan, T., P. Solenberger, and J. van Hoewyk. 2011. IVEware: Imputation and variance estimation software: Installation instructions and user guide. Survey Research Center, Institute of Social Research, University of Michigan, Ann Arbor.Google Scholar
  24. Raghunathan, T. E. 2006. Combining information from multiple surveys for assessing health disparities. Allgemeines Statistisches Archiv., 90(4), 515–526.MathSciNetCrossRefGoogle Scholar
  25. Reiter, J.R. 2008. Multiple imputation when records used for imputation are not used or disseminated for analysis. Biometrika, 95(4), 933–946.MathSciNetCrossRefGoogle Scholar
  26. Richardson, D. B., and A. Ciampi. 2003. Effects of exposure measurement error when an exposure variable is constrained by a lower limit. Am. J. Epidemiol., 157, 355–363.CrossRefGoogle Scholar
  27. Richardson, S., W. R. Gilks. 1993. Conditional independence models for epidemiological studies with covariate measurement error. Stat. Med., 12, 1703–1722.CrossRefGoogle Scholar
  28. Richardson, S., L. Leblond, I. Jaussent, and P. J. Green. 2002. Mixture models in measurement error problems, with reference to epidemiological studies. J. R. Stat. Soc. Ser. A Stat. Society, 165, 549–566.MathSciNetCrossRefGoogle Scholar
  29. Robins J. M., and N. Wang. 2000. Inference in imputation estimators. Biometrika, 87, 113–124.MathSciNetCrossRefGoogle Scholar
  30. Rosner B., D. Spiegelman, and W. C. Willett. 1990. Correction of logistic regression relative risk estimates and confidence intervals for measurement error: The case of multiple covariates measured with error. Am. J. Epidemiol., 132, 734–745.CrossRefGoogle Scholar
  31. Rubin, D. B. 1987. Multiple imputation for nonresponse in surveys. New York, NY, Wiley.CrossRefGoogle Scholar
  32. Sadler, W. A., and M. H. Smith. 1985. Estimation of the response-error relationship in immunoassay. Clinical Chemistry, 31, 1802–1805.Google Scholar
  33. SAS 2011. Proc MI and Proc MIANALYZE in statistical analysis software, Version 9.3. Cary, NC, SAS Institute, Inc.Google Scholar
  34. Singh, A., and I. Nocerino. 2002. Robust estimation of mean and variance using environmental data sets with below detection limit observations. Chemometrics Intelligent Lab. Systems, 60, 69–86.CrossRefGoogle Scholar
  35. Spiegelman, D. 1990. Validation Studies. In Colton, T. and Armitage, P., eds., Encyclopedia of Biostatistics, 4694–1700. Sussex, UK, Wiley.Google Scholar
  36. Spiegelman, D., R. J. Carroll, and V. Kipnis. 2001. Efficient regression calibration for logistic regression in main study/internal validation study designs with an imperfect reference instrument. Stat. Med., 20, 139–160.CrossRefGoogle Scholar
  37. Spiegelman, D., R. Logan, and D. Grove. 2011. Regression calibration with heteroscedastic error variance. Lnte. J. Biostat., 7, 1–34.MathSciNetGoogle Scholar
  38. Stata. 2011. Stata: Data analysis and statistics software, Version 12. College Station, TX, StataCorp LP.Google Scholar
  39. Van Buuren, S., and K. Groothuis-Oudshoorn. 2011. MICE: Multivariate imputation by chained equations. R package, version 2.9. http://CRAN.R-project.org/package=mice.

Copyright information

© Grace Scientific Publishing 2013

Authors and Affiliations

  1. 1.Merck & Co. Inc.RahwayUSA
  2. 2.Department of BiostatisticsUniversity of MichiganAnn ArborUSA

Personalised recommendations