Advertisement

Journal of Statistical Theory and Practice

, Volume 7, Issue 2, pp 178–182 | Cite as

Pseudo-Likelihood, Explanatory Power, and Bayes’s Theorem [Comment on “A Likelihood Paradigm for Clinical Trials”]

  • David R. BickelEmail author
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bickel, D. R. 2011. A predictive approach to measuring the strength of statistical evidence for single and multiple comparisons. Can. J. Stat., 39, 610–631.MathSciNetCrossRefGoogle Scholar
  2. Bickel, D. R. 2012. The strength of statistical evidence for composite hypotheses: Inference to the best explanation. Stat. Sin., 22, 1147–1198.MathSciNetzbMATHGoogle Scholar
  3. Bickel, D. R. 2013. Minimax-optimal strength of statistical evidence for a composite alternative hypothesis. Int. Stat. Rev. In press.Google Scholar
  4. Dowe, D. L. 2011. MML, Hybrid Bayesian network graphical models, statistical consistency, invariance and uniqueness. In Philosophy of statistics, ed. P. S. Bandyopadhyay and M. R. Forster, 901–92. Amsterdam, North Holland.CrossRefGoogle Scholar
  5. Edwards, A. W. F. 1992. Likelihood. Baltimore, MD, Johns Hopkins University Press.zbMATHGoogle Scholar
  6. Fisher, R. A. 1973. Statistical methods and scientific inference. New York, NY, Hafner Press.zbMATHGoogle Scholar
  7. Forster, M., and E. Sober. 2004. Why likelihood? In The nature of scientific evidence: statistical, philosophical, and empirical considerations, 153–190. Chicago, University of Chicago Press.CrossRefGoogle Scholar
  8. Grendar, M. 2012. Is the p-value a good measure of evidence? Asymptotic consistency criteria. Stat. Probability Lett., 82, 1116–1119.MathSciNetCrossRefGoogle Scholar
  9. Grünwald, P. D., 2007. The minimum description length principle. London, UK, MIT Press.CrossRefGoogle Scholar
  10. Harman, G., and S. Kulkarni. 2011. Statistical learning theory as a framework for the philosophy of induction. In Philosophy of statistics, ed. P. S. Bandyopadhyay and M. R. Forster, 833–848. Amsterdam, North Holland.CrossRefGoogle Scholar
  11. He, Y., W. Huang, and H. Liang. 2007. Axiomatic development of profile likelihoods as the strength of evidence for composite hypotheses. Commun. Stat. Theory Methods, 36, 2695–2706.MathSciNetCrossRefGoogle Scholar
  12. Lindsey, J. 1996. Parametric statistical inference. Oxford, UK, Oxford Science Publications, Clarendon Press.zbMATHGoogle Scholar
  13. Lipton, P. 2004. Inference to the best explanation. London, UK, Routledge.Google Scholar
  14. Musgrave, A. 2010. Critical rationalism, explanation, and severe tests. In: Mayo, D. G., Spanos, A. (Eds.), Error and inference: Recent exchanges on experimental reasoning, reliability, and the objectivity and rationality of science, ed. D. G. Mayo and A. Spanos, 88–112. New York, NY, Cambridge University Press.Google Scholar
  15. Neyman, J., and E. L. Scott. 1948. Consistent estimates based on partially consistent observations. Econometrica, 16, 1–32.MathSciNetCrossRefGoogle Scholar
  16. Popper, K. 1992. Realism and the aim of science. Postscript to the logic of scientific discovery. London, UK, Routledge.Google Scholar
  17. Popper, K. 2002. Logic of scientific discovery. London, UK, Routledge.zbMATHGoogle Scholar
  18. Psillos, S. 2004. Inference to the best explanation and Bayesianism. In Induction and deduction in the sciences. vol. 11, 83–92. New York, Springer.CrossRefGoogle Scholar
  19. Psillos, S. 2007. The fine structure of inference to the best explanation. Philos. Phenomenol. Res., 74(2), 441–448.CrossRefGoogle Scholar
  20. Rissanen, J. 2007. Information and complexity in statistical modeling. New York, NY, Springer.CrossRefGoogle Scholar
  21. Robinson, G. K. 1991. That BLUP is a good thing: The estimation of random effects. Stat. Sci., 6, 15–32.MathSciNetCrossRefGoogle Scholar
  22. Rowbottom, D. P. 2010. Popper’s critical rationalism: A philosophical investigation. London, UK, Routledge.Google Scholar
  23. Royall, R. 1997. Statistical evidence: A likelihood paradigm. New York, NY, CRC Press.zbMATHGoogle Scholar
  24. Royall, R. 2000. On the probability of observing misleading statistical evidence (with discussion). J. Am. Stat. Assoc., 95, 760–780.MathSciNetCrossRefGoogle Scholar
  25. Severini T., 2000. Likelihood methods in statistics. Oxford, UK, Oxford University Press.zbMATHGoogle Scholar
  26. Steel, D. 2011. Testability and statistical learning theory. In Philosophy of statistics, ed. P. S. Bandyopadhyay and M. R. Forster, 849–864. Amsterdam, North Holland.CrossRefGoogle Scholar
  27. Taper, M. L., and S. R. Lele. 2011. Evidence, evidence functions, and error probabilities. In Philosophy of Statistics, ed. P. S. Bandyopadhyay and M. R. Forster, 513–534. Amsterdam, North Holland.CrossRefGoogle Scholar
  28. Wallace, C. S. 2005. Statistical and inductive inference by minimum message length. New York, NY, Springer.zbMATHGoogle Scholar
  29. Zhang, Z., and B. Zhang. 2013. A likelihood paradigm for clinical trials. J. Stat. Theory Pract., 7(2), 157–177.MathSciNetCrossRefGoogle Scholar

Copyright information

© Grace Scientific Publishing 2013

Authors and Affiliations

  1. 1.Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology, and Immunology, Department of Mathematics and StatisticsUniversity of OttawaOttawaCanada

Personalised recommendations