Advertisement

Journal of Statistical Theory and Practice

, Volume 6, Issue 3, pp 590–595 | Cite as

Book Review

  • Carlos A. Coelho
  • Abel M. Rodrigues
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brady T. West, Kathleen B. Welch, and Andrzej T. Galecki, Linear Mixed Modełs: A Practical Guide Using Statistical Software, Chapmann & Hall/CRC Press (2006)MATHGoogle Scholar
  2. Chi, E. M., and G. C. Reinsel. 1989. Models of longitudinal data with random effects and AR(1) errors. J. Am. Stat. Assoc., 84, 452–459.MathSciNetCrossRefGoogle Scholar
  3. Gibbons, R. D., and D. Hedeker. 2000. Applications of mixed effects models in biostatistics. Sankhya, Ser. B, 62, 70–103.MathSciNetMATHGoogle Scholar
  4. Lee, Y., and J. A. Nelder. 2001. Hierarchical generalized linear models: A synthesis of generalized linear models, random-effect models and structured dispersions. Biometrika, 88, 987–1006.MathSciNetCrossRefGoogle Scholar
  5. Lee, Y., and J. A. Nelder. 2006. Double hierarchical generalized linear models. Appl. Stat., 55, 139–185.MathSciNetMATHGoogle Scholar
  6. Mansour, H., E. V. Nordheim, and J. J. Rutledge. 1985. Maximum likelihood estimation of variance components in repeated measures designs assuming autoregressive errors. Biometrics, 41, 287–294.MathSciNetCrossRefGoogle Scholar
  7. McCulloch, C. E., and S. R. Searle. 2001. Generalized, linear, and mixed models. New York, Wiley.MATHGoogle Scholar
  8. McCulloch, C. E., S. R. Searle, and J. M. Neuhaus. 2008. Generalized, linear, and mixed models, 2nd ed. Hoboken, NJ, J. Wiley & Sons.MATHGoogle Scholar
  9. Searle, S. R. 1971. Linear models. New York, Wiley.MATHGoogle Scholar
  10. Searle, S. R., G. Casella, and C. E. McCulloch. 1992. Variance components. New York, Wiley.CrossRefGoogle Scholar
  11. Ten-Have, T. R. 1996. A mixed effects model for multivariate ordinal response data including correlated failure times with ordinal responses. Biometrics, 52, 473–491.MathSciNetCrossRefGoogle Scholar
  12. Verbeke, G., and G. Molenberghs. 2000. Linear mixed models for longitudinal data. New York, Springer.MATHGoogle Scholar

Copyright information

© Grace Scientific Publishing 2012

Authors and Affiliations

  • Carlos A. Coelho
    • 1
  • Abel M. Rodrigues
    • 2
  1. 1.Departamento de Matemática and Centro de Matemática e Aplicações, Faculdade de Ciências e TecnologiaUniversidade Nova de LisboaCaparicaPortugal
  2. 2.Instituto Nacional dos Recursos BiológicosUnidade de Silvicultura e Produtos Florestais (INRB/USPF)OeirasPortugal

Personalised recommendations