Advertisement

Journal of Statistical Theory and Practice

, Volume 6, Issue 3, pp 510–523 | Cite as

Bivariate Extreme Analysis of Olympic Swimming Data

  • M. B. Adam
  • J. A. Tawn
Article

Abstract

We model the times of the gold medalist swimmers in the Olympic Games. As the data represent an extreme value we use methods from extreme value theory. Features of the recorded variables lead to the inclusion of mixed parametric and nonparametric modeling for the marginal nonstationarity, constraints on marginal parameters to account for stochastic ordering between times from different events, and bivariate modeling to capture dependence across winning event times. Our analysis provides greater insight into the progression of winning times.

AMS Subject Classification

60G70 62E10 62G30 62G32 62P99 

Keywords

Bivariate extreme value theory Generalized extreme value distribution Olympic Games Penalized likelihood Stochastic ordering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adam, M. B. 2007. Extreme value modelling for sports data. PhD thesis, Lancaster University, Lancaster, UK.Google Scholar
  2. Adam, M. B., and J. A. Tawn. 2011. Modification of Pickands’ dependence function for ordered bivariate extreme distribution. Commun. Stat. Theory Methods, 40, 1687–1700.CrossRefGoogle Scholar
  3. Barao, M. I., and J. A. Tawn. 1999. Extremal analysis of short series with outliers; See-levels and athletics records. Appl. Stat., 48, 469–487.zbMATHGoogle Scholar
  4. Beirlant, J., Y. Goegebeur, J. Segers, and J. Teugels. 2004. Statistics of extremes: Theory and applications. Chichester, Wiley.CrossRefGoogle Scholar
  5. Chavez-Demoulin, V. 1999. Two problems in environmental statistics: Capture-recapture analysis and smooth extremal models. PhD thesis, Department of Mathematics, Swiss Federal Institute of Technology, Lausanne.Google Scholar
  6. Coles, S. G. 2001. An introduction to statistical modeling of extreme values. London, Springer-Verlag.CrossRefGoogle Scholar
  7. Coles, S. G. and J. A. Tawn. 1991. Modelling extreme multivariate events. J. R. Stat. Soc. Ser. B (Methodological), 53, 377–392.MathSciNetzbMATHGoogle Scholar
  8. Davison, A. C. and R. L. Smith. 1990. Models for exceedances over hight thresholds. J. R. Stat. Soc. Ser. B (Methodological), 52, 393–442.zbMATHGoogle Scholar
  9. Fox, J. 2000a. Nonparametric simple regression: Smoothing scatterplots. Sage University Paper Series on Quantitative Applications in the Social Sciences, 07-130. Thousand Oaks, CA, Sage.CrossRefGoogle Scholar
  10. Fox, J. 2000b. Multiple and generalized nonparametric regression. Sage University Paper Series on Quantitative Applications in the Social Sciences, 07-131. Thousand Oaks, CA, Sage.CrossRefGoogle Scholar
  11. Gaetan, C., and M. Grigoletto. 2004. Smoothing sample extremes with dynamics models. Extremes, 7, 221–236.MathSciNetCrossRefGoogle Scholar
  12. Green P. J., and B. W. Silverman. 1994. Nonparametric regression and generalized linear models. London, Chapman & Hall.CrossRefGoogle Scholar
  13. Hall, P., and N. Tajvidi. 2000a. Distribution and dependence-function estimation for bivariate extreme-value distribution. Bernoulli, 6, 835–844.MathSciNetCrossRefGoogle Scholar
  14. Hall, P., and N. Tajvidi. 2000b. Nonparametric analysis of temporal trend when fitting parametric models to extreme-value data. Stat. Sci., 15, 153–167.MathSciNetCrossRefGoogle Scholar
  15. Kotz, S., and S. Nadarajah. 2000. Extreme value distributions. London, Imperial College Press.CrossRefGoogle Scholar
  16. Leadbetter, M. R., and H. Rootzén. 1988. Extremal theory for stochastic processes. Ann. Probability, 16, 431–478.MathSciNetCrossRefGoogle Scholar
  17. Nadarajah, S. 1994. Multivariate extreme value methods with applications to reservoir flood safety. PhD thesis, University of Sheffield, Sheffield, UK.Google Scholar
  18. Nadarajah, S., C. W. Anderson, and J. A. Tawn. 1998. Ordered multivariate extremes. J. R. Stat. Soc. Ser. B (Stat. Methodol.), 60, 473–496.MathSciNetCrossRefGoogle Scholar
  19. Padoan, S. A., and M. P. Wand. 2008. Mixed model-based additive models for sample extremes. Stat. Probability Lett., 78, 2850–2858.MathSciNetCrossRefGoogle Scholar
  20. Payer, T. 2007. Modelling extreme wind speeds. PhD thesis, Faculty of Mathematics, Informatics and Statistics, München University, Munich, Germany.Google Scholar
  21. Pickands, J. 1981. Multivariate extreme value distributions. Proc. 43rd Session of the ISI, 49, 859–878.MathSciNetzbMATHGoogle Scholar
  22. Robinson, M. E., and J. A. Tawn. 1995. Statistics for exceptional athletics records. Appl. Stat., 44 (4), 499–511.CrossRefGoogle Scholar
  23. Smith, R. L. 1989. Extreme value analysis of environmental time series: An example based on ozone data (with discussion). Stat. Sci., 4, 367–393.CrossRefGoogle Scholar
  24. Smith, R. L., J. A. Tawn, and H. K. Yuen. 1990. Statistics of multivariate extremes. Int. Stat. Rev., 58, 47–58.CrossRefGoogle Scholar
  25. Strand, M., and D. Boes. 1998. Modeling road racing times of competitive recreational runners using extreme value theory. Am. Stat., 52, 205–210.Google Scholar
  26. Tawn, J. A. 1988a. Bivariate extreme value theory: Models and estimation. Biometrika, 75, 397–415.MathSciNetCrossRefGoogle Scholar
  27. Tawn, J. A. 1988b. An extreme-value theory model for dependent observations. J. Hydrol., 101, 227–250.CrossRefGoogle Scholar
  28. Yee, T., and A. Stephenson. 2007. Vector generalized linear and additive extreme value models. Extremes, 10, 1–19.MathSciNetCrossRefGoogle Scholar

Copyright information

© Grace Scientific Publishing 2012

Authors and Affiliations

  1. 1.Mathematics DepartmentUniversiti Putra Malaysia, UPMSerdangMalaysia
  2. 2.Mathematics and Statistics DepartmentLancaster UniversityLancasterUK

Personalised recommendations