Advertisement

Journal of Statistical Theory and Practice

, Volume 6, Issue 3, pp 468–491 | Cite as

Extreme Value Theory in Medical Sciences: Modeling Total High Cholesterol Levels

Article

Abstract

The World Health Organization (WHO) estimated that more than 50% of the mortality and disability caused by the ischemic heart disease and stroke could be avoided by implementing simple measures at individual and national levels. Programs targeted to promote the control of the main risk factors for these pathologies, such as hypertension, hypercholesterolemia, smoking, and obesity, should be designed and implemented. In 2005, the Department of Pharmaceutical Care Services of the Portuguese National Association of Pharmacies developed a survey for assessing the cardiovascular risk of the Portuguese population that attended the pharmacies. Several parameters were measured, such as total cholesterol, blood glucose, and triglycerides levels. To the best of our knowledge, the studies performed so far in our country describe the mean behavior of the individuals. However, this approach is unable to address subjects who have very high levels of, for instance, total cholesterol. These individuals are located in the tail of the distribution and are the ones most at risk of developing a cardiovascular disease. An appropriate way to address this problem is to use extreme value theory (EVT). EVT has extensively been applied to model data of many scientific areas but seldom in medical sciences. In this article, we use the peaks over threshold (POT) method to model the sample of excesses above a sufficiently high value of total cholesterol. As usual in EVT applications, the levels of total cholesterol that are to be observed with a small probability are estimated by region.

AMS Subject Classification

60G70 92C50 

Keywords

Cardiovascular diseases Extreme quantile estimation Generalized Pareto distribution Peaks over threshold Total cholesterol levels 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Associação Nacional das Farmácias. 2008. CheckSaúde, Guia Prático, Risco Cardiovascular, 2nd ed. Lisboa, Portugal.Google Scholar
  2. Choulakian, V., and M. A. Stephens. 2001. Goodness-of-fit tests for the generalized Pareto distribution. Technometrics, 43, 478–484.MathSciNetCrossRefGoogle Scholar
  3. Coles, S. 2001. An introduction to statistical modeling of extreme values. London, Springer-Verlag.CrossRefGoogle Scholar
  4. Costa, J., M. Borges, and E. Oliveira. 2003a. Incidência e prevalência da hipercolesterolémia em Portugal: Uma revisão sistemática da literatura. Part I. Rev. Port. Cardiol., 22(4), 569–577.Google Scholar
  5. Costa, J., M. Borges, and E. Oliveira. 2003b. Incidência e prevalência da hipercolesterolémia em Portugal: Uma revisão sistemática da literatura. Part II. Rev. Port. Cardiol., 22(5), 683–702.Google Scholar
  6. Dekkers, A. L. M., J. H. J. Einmahl, and L. de Haan. 1989. A moment estimator for the index of an extreme value distribution. Ann. Stat., 17, 1833–1855.MathSciNetCrossRefGoogle Scholar
  7. de Zea Bermudez, P., and S. Kotz. 2010a. Parameter estimation of the generalized Pareto distribution—Part I. J. Stat. Plan. Inference, 140, 1353–1373.CrossRefGoogle Scholar
  8. de Zea Bermudez, P., and S. Kotz. 2010b. Parameter estimation of the generalized Pareto distribution—Part II. J. Stat. Plan. Inference, 140, 1374–1388.CrossRefGoogle Scholar
  9. de Zea Bermudez, P., and Z. Mendes. 2011a. Extreme value theory in medical sciences: Modeling total high cholesterol levels. Notas e Comunicações do CEAUL, Nota 10. https://doi.org/ceaul.fc.ul.pt/notas.html?ano=2011Google Scholar
  10. de Zea Bermudez, P., and Z. Mendes. 2011b. Supplementary material—Extreme value theory in medical sciences: modeling total high cholesterol levels 2011. https://doi.org/patriciadezeabermudez.weebly.com.Google Scholar
  11. DuMouchel, W. H. 1983. Estimating the stable index α in order to measure tail thickness: A critique. Ann. Stat., 11, 1019–1031.MathSciNetCrossRefGoogle Scholar
  12. Embrechts, P., C. Klüppelberg, and T. Mikosch. 1997. Modelling extremal events for insurance and finance. Berlin, Springer-Verlag.CrossRefGoogle Scholar
  13. Fontes, E., and Z. Mendes. 2006. Utilization of statins in Portugal. Pharmacoepidemiol. Drug Safety, 15, S182.Google Scholar
  14. Fundação Portuguesa de Cardiologia. 2001a. Estudo ALTO-MAR. Caracterização da População Portuguesa seguida em consulta de clínica geral com Alto e Muito Alto Risco Cadiovascular.Google Scholar
  15. Fundação Portuguesa de Cardiologia. 2001b. Estudo BECEL. Perfil Lipídico da População Portuguesa. Instituto de Alimentação Becel.Google Scholar
  16. Grimshaw, S. D. 1993. Computing maximum likelihood estimates for the generalized Pareto distribution. Technometrics, 35, 185–191.MathSciNetCrossRefGoogle Scholar
  17. Lilliefors, H. W. 1969. On the Kolmogorov–Smirnov test for the exponential distribution with mean unknown. J. Am. Stat. Assoc., 64, 387–389.CrossRefGoogle Scholar
  18. Martins, A. P., A. C. Miranda, Z. Mendes, A. P. Ferreira, M. A. Soares, and A. Nogueira. 2002. Self-medication on Portuguese Urban Population: A prevalence study. Pharmacoepidemiol. Drug Safety, 11, 409–414.CrossRefGoogle Scholar
  19. National Cholesterol Education Program 2011. https://doi.org/www.Nhlbi.nih.gov.
  20. National Heart, Lung and Blood Institute. 1991. Report of the Expert Panel on Population Strategies for Blood Cholesterol Reduction. A statement from the National Education Program, National Heart, Lung and Blood Institute, National Institute of Health. Circulation, 83, 2154–232.CrossRefGoogle Scholar
  21. Pickands, J. 1975. Statistical inference using extreme order statistics. Ann. Stat.,3, 119–131.MathSciNetCrossRefGoogle Scholar
  22. Simões, J. A., M. E. Gama, and C. B. Contente. 2000. Prevalência de factores de risco cardiovascular numa população rural com idade entre 25 e 44 anos. Rev. Port. Cardiolog. 19, 656–667.Google Scholar
  23. World Health Organization. 2002. The world health report. Reducing risk and promoting healthy life 2002. https://doi.org/www.who.in Google Scholar

Copyright information

© Grace Scientific Publishing 2012

Authors and Affiliations

  1. 1.DEIO, Faculty of SciencesUniversity of LisbonLisboaPortugal
  2. 2.CEAULFaculdade de Ciências da Universidade de LisboaLisboaPortugal
  3. 3.CEFARINFOSAÚDELisboaPortugal

Personalised recommendations