Improving Two Recursive Constructions for Covering Arrays

  • Charles J. ColbournEmail author
  • Junling Zhou


Recursive constructions for covering arrays employ small ingredient covering arrays to build large ones. At present the most effective methods are ‘cut-and-paste’ (or Roux-type) and column replacement techniques. Both can introduce substantial duplication of coverage; if unnecessary duplication can be avoided, then the recursion can yield a smaller array. Two extensions of covering arrays are introduced here for that purpose. The first examines arrays that cover only certain of the t-way interactions; we call these quilting arrays. We develop constructions of such arrays, and generalize column replacement techniques to use them in the construction of covering arrays. The second examines some consequences of nesting covering arrays of smaller strength in those of larger strength; the intersections among the covering arrays so nested lead to improvements in Roux-type constructions. For both directions, we examine consequences for the existence of covering arrays.



Covering array Distributing hash family Heterogeneous hash family Perfect hash family 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alon, N. 1986. Explicit construction of exponential sized families of k-independent sets. Discrete Math., 58, 191–193.MathSciNetCrossRefGoogle Scholar
  2. Barwick, S. G., and W. A. Jackson. 2007. A sequence approach to linear perfect hash families. Des. Codes Cryptogr., 45, 95–121.MathSciNetCrossRefGoogle Scholar
  3. Barwick, S. G., and W. A. Jackson. 2008. Geometric constructions of optimal linear perfect hash families. Finite Fields Appl., 14, 1–13.MathSciNetCrossRefGoogle Scholar
  4. Barwick, S. G., W. A. Jackson, and C. T. Quinn. 2004. Optimal linear perfect hash families with small parameters. J. Combin. Des., 12, 311–324.MathSciNetCrossRefGoogle Scholar
  5. Blackburn, S. R. 2000. Perfect hash families: probabilistic methods and explicit constructions. J. Combin. Theory (A), 92, 54–60.MathSciNetCrossRefGoogle Scholar
  6. Blackburn, S. R., and P. R. Wild. 1998. Optimal linear perfect hash families. J. Combin. Theory (A), 83, 233–250.MathSciNetCrossRefGoogle Scholar
  7. Bryce R.C., Colbourn C.J., 2009. A density-based greedy algorithm for higher strength covering arrays. Software Testing, Verification, and Reliability, 19, 37–53.CrossRefGoogle Scholar
  8. Chateauneuf, M. A., and D. L. Kreher. 2002. On the state of strength-three covering arrays. J. Combin. Des., 10, 217–238.MathSciNetCrossRefGoogle Scholar
  9. Cohen, D. M., S. R. Dalal, M. L. Fredman, and G. C. Patton. 1997. The AETG system: An approach to testing based on combinatorial design. IEEE Trans. Software Eng., 23, 437–44.CrossRefGoogle Scholar
  10. Cohen, M. B., C. J. Colbourn, and A. C. H. Ling. 2008. Constructing strength three covering arrays with augmented annealing. Discrete Math., 308, 2709–2722.MathSciNetCrossRefGoogle Scholar
  11. Colbourn, C. J. 2004. Combinatorial aspects of covering arrays. Le Matematiche (Catania), 58, 121–167.zbMATHGoogle Scholar
  12. Colbourn, C. J. 2009a. Covering array tables. Scholar
  13. Colbourn, C. J. 2009b. Distributing hash families and covering arrays. J. Combin. Inform. Syst. Sci., 34, 113–126.zbMATHGoogle Scholar
  14. Colbourn, C. J., G. Kéri, P. P. Rivas Soriano, and J. C. Schlage-Puchta. 2010. Covering and radiuscovering arrays: Constructions and classification. Discrete Appl. Math., 158, 1158–1190.MathSciNetCrossRefGoogle Scholar
  15. Colbourn, C. J., and A. C. H. Ling. 2009a. Linear hash families and forbidden configurations. Des. Codes Cryptogr., 59, 25–55.MathSciNetCrossRefGoogle Scholar
  16. Colbourn, C. J., and A. C. H. Ling. 2009b. A recursive construction for perfect hash families. J. Math. Crypt., 3, 291–306.MathSciNetzbMATHGoogle Scholar
  17. Colbourn, C. J., S. S. Martirosyan, G. L. Mullen, D. E. Shasha, G. B. Sherwood, and J. L. Yucas. 2006a. Products of mixed covering arrays of strength two. J. Combin. Des., 14, 124–138.MathSciNetCrossRefGoogle Scholar
  18. Colbourn, C. J., S. S. Martirosyan, Tran Van Trung, and R. A. Walker, II. 2006b. Roux-type constructions for covering arrays of strengths three and four. Des. Codes Cryptogr., 41, 33–57.MathSciNetCrossRefGoogle Scholar
  19. Colbourn, C. J., and J. Torres-Jiménez. 2010. Heterogeneous hash families and covering arrays. Contemp. Math., 523, 3–15.MathSciNetCrossRefGoogle Scholar
  20. Dinitz, J. H., A. C. H. Ling, and D. R. Stinson. 2007. Perfect hash families from transversal designs. Austr. J. Combin., 37, 233–242.MathSciNetzbMATHGoogle Scholar
  21. Hartman A. 2005. Software and hardware testing using combinatorial covering suites. In Interdisciplinary applications of graph theory, combinatorics, and algorithms, ed. M. C. Golumbic and I. B. A. Hartman, 237–266. Norwell, MA, Springer.CrossRefGoogle Scholar
  22. Hartman, A., and L. Raskin. 2004. Problems and algorithms for covering arrays. Discrete Math., 284, 149–156.MathSciNetCrossRefGoogle Scholar
  23. Martirosyan, S. S., and C. J. Colbourn. 2005. Recursive constructions for covering arrays. Bayreuther Math. Schriften, 74, 266–275.MathSciNetzbMATHGoogle Scholar
  24. Martirosyan, S. S., and Tran Van Trung. 2004. On t-covering arrays. Des. Codes Cryptogr., 32, 323–339.MathSciNetCrossRefGoogle Scholar
  25. Martirosyan, S. S., and Tran Van Trung. 2008. Explicit constructions for perfect hash families. Des. Codes Cryptogr., 46, 97–112.MathSciNetCrossRefGoogle Scholar
  26. Nayeri, P., C. J. Colbourn, and G. Konjevod. 2009. Randomized postoptimization of covering arrays. Lecture Notes Comput. Sci., 5874, 408–419.MathSciNetCrossRefGoogle Scholar
  27. Roux, G. 1987. k-Propriétés dans les tableaux de n colonnes: cas particulier de la k-surjectivité et de la k-permutivité. Ph.D. thesis; Université de Paris, Paris, France.Google Scholar
  28. Tang, D. T., and C. L. Chen. 1984. Iterative exhaustive pattern generation for logic testing. IBM J. Res. Dev., 28(2), 212–219.CrossRefGoogle Scholar
  29. Torres-Jimenez, J. 2009. Covering array tables. Scholar
  30. Turán, P. 1941. Eine Extremalaufgabe aus der Graphentheorie. Mat. Fiz. Lapok, 48, 436–452.MathSciNetzbMATHGoogle Scholar
  31. Walker, R. A., II, and C. J. Colbourn. 2007. Perfect hash families: Constructions and existence. J. Math. Crypt., 1, 125–150.MathSciNetzbMATHGoogle Scholar

Copyright information

© Grace Scientific Publishing 2012

Authors and Affiliations

  1. 1.School of Computing, Informatics, and Decision Systems Engineering (CIDSE)Arizona State UniversityTempeUSA
  2. 2.Institute of MathematicsBeijing Jiaotong UniversityBeijingP. R. China

Personalised recommendations