Advertisement

Journal of Statistical Theory and Practice

, Volume 5, Issue 4, pp 659–673 | Cite as

A Jackknifed Ridge M-estimator for Regression Model with Multicollinearity and Outliers

  • N. H. Jadhav
  • D. N. Kashid
Article

Abstract

In the multiple regression analysis, most frequently occurring problems are the presence of mul-ticollinearity and outliers. They produce undesirable effects on the least squares estimates of regression parameters. The Jackknifed Ridge Regression estimator and M-estimator have been proposed to overcome multicollinearity and outliers respectively. The Jackknifed Ridge Regression estimator is obtained by shrinking the Ordinary Least Squares estimator. Since the Ordinary Least Squares estimator is sensitive to outliers, the Jackknife Ridge Regression estimator is also sensitive to outliers. To overcome the combined problem of multicollinearity and outliers, we propose a new estimator namely, Jackknifed Ridge M-estimator. This estimator is obtained by shrinking an M-estimator instead of the Ordinary Least Squares estimator.

AMS Subject Classification

62J05 62J07 

Key-words

Ridge estimator Jackknifed ridge estimator M-estimator Multicollinearity Outlier 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Draper, N.R., Smith, H., 1998. Applied Regression Analysis, Third edition. John Wiley, New York.Google Scholar
  2. Hampel, F.R., Ronchetti, E.M., Rousseeuvw, P.J., Stahel, W.A., 1986. Robust Statistics: The Approach Based on Influence Function. John Wiley, New York.Google Scholar
  3. Hoerl, A.E., Kennard, R.W., 1970. Ridge regression: biased estimation for nonorthogonal problems. Tech-nometrics, 12(1), 55–67.MATHGoogle Scholar
  4. Hoerl, A.E., Kennard, R.W., Baldwin, K.F., 1971. Ridge regression: some simulations. Communications in Statistics–Theory and Methods, 4(2), 105–123.MATHGoogle Scholar
  5. Huber, P.J., 1973. Robust Regression: asymptotics, conjectures, and Monte Carlo. Ann. Stat., 1, 799–821.MathSciNetCrossRefGoogle Scholar
  6. Huber, P.J., 1981. Robust Statistics. John Wiley, New York.CrossRefGoogle Scholar
  7. McDonald, G.C., Galarneau, D.I., 1971. A Monte Carlo evaluation of some ridge-type estimators. Journal of the American Statistical Association, 70(350), 407–416.CrossRefGoogle Scholar
  8. Montgomery, D.C., Peck, E.A., Vining, G.G., 2006. Introduction to Linear Regression Analysis, Third edition. John Wiley and sons, New York.MATHGoogle Scholar
  9. Rousseeuw, P.J., Leroy, A.M., 1987. Robust Regression and Outlier Detection. John Wiley and sons, New York.CrossRefGoogle Scholar
  10. Sakalliogˇlu, S., Kaçiranlar, S., 2008. A new biased estimator based on ridge estimation. Stat. Papers, 49, 669–689.MathSciNetCrossRefGoogle Scholar
  11. Singh, B., Chaubey, Y.P., Dwivedi, T.D., 1986. An almost unbiased ridge estimators. Sankhya, 48(3), 342–346.MathSciNetMATHGoogle Scholar
  12. Vinod, H.D., Ullah, A., 1981. Recent Advance in Regression Methods. Marcel Dekker, New York.MATHGoogle Scholar

Copyright information

© Grace Scientific Publishing 2011

Authors and Affiliations

  1. 1.Department of StatisticsShivaji UniversityKolhapurIndia

Personalised recommendations