Algorithms for Generating Maximin Latin Hypercube and Orthogonal Designs

  • Hyejung MoonEmail author
  • Angela Dean
  • Thomas Santner


Various proposals for implementing the maximin criterion for space-filling designs for use in computer experiments are reviewed. A new, well-performing algorithm is presented for the construction of maximin Latin hypercube designs using a 2-dimensional distance metric. An additional criterion, design orthogonality, is important when screening the effects of the input variables and a new search algorithm for orthogonal maximin designs is described for both 2-dimensional and multi-dimensional distance metrics. The new algorithms are shown to outperform existing algorithms under a variety of criteria.


Computer experiments Evolutionary operation algorithm Gram-Schmidt orthogonalization 

AMS Subject Classification

62K05 05B15 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bingham, D., Sitter, R.R., Tang, B., 2009. Orthogonal and nearly orthogonal designs for computer experiments. Biometrika, 96, 51–65.MathSciNetCrossRefGoogle Scholar
  2. Butler, N.A., 2001. Optimal and orthogonal Latin hypercube designs for computer experiments. Biometrika, 88, 847–857.MathSciNetCrossRefGoogle Scholar
  3. Cioppa, T.M., Lucas, T.W., 2007. Efficient nearly orthogonal and space-filling Latin hypercubes. Techno-metrics, 49, 45–55.MathSciNetCrossRefGoogle Scholar
  4. Forrester, A., Sóbester, A., Keane, A., 2008. Engineering Design via Surrogate Modelling. Wiley, Chichester.CrossRefGoogle Scholar
  5. Johnson, M.E., Moore, L.M., Ylvisaker, D., 1990. Minimax and maximin distance designs. Journal of Statistical Planning and Inference, 26, 131–148.MathSciNetCrossRefGoogle Scholar
  6. Joseph, V.R., Hung, Y., 2008. Orthogonal-maximin Latin hypercube designs. Statistica Sinica, 18, 171–186.MathSciNetzbMATHGoogle Scholar
  7. Lin, C.D., Mukerjee, R., Tang, B., 2009. Construction of orthogonal and nearly orthogonal Latin hypercubes. Biometrika, 96, 243–247.MathSciNetCrossRefGoogle Scholar
  8. McKay, M.D., Beckman, R.J., Conover, W.J., 1979. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics, 21, 239–245.MathSciNetzbMATHGoogle Scholar
  9. Moon, H., Santner, T.J., Dean, A.M., 2010. Two-stage sensitivity-based group screening in computer experiments. Submitted for Publication.Google Scholar
  10. Morris, M.D., Mitchell, T.J., 1995. Exploratory designs for computational experiments. Journal of Statistical Planning and Inference, 43, 381–402.CrossRefGoogle Scholar
  11. Owen, A.B., 1994. Controlling correlations in Latin hypercube samples. Journal of the American Statistical Association, 89, 1517–1522.CrossRefGoogle Scholar
  12. Steinberg, D.M., Lin, D.K.J., 2006. A construction method for orthogonal Latin hypercube designs. Biometrika, 93, 279–288, Correction, p. 1025.MathSciNetCrossRefGoogle Scholar
  13. Sun, F., Liu, M.-Q., Lin, D.K.J., 2009. Construction of orthogonal Latin hypercube designs. Biometrika, 96, 971–974.MathSciNetCrossRefGoogle Scholar
  14. Tang, B., 1993. Orthogonal array-based latin hypercubes. Journal of the American Statistical Association, 88, 1392–1397.MathSciNetCrossRefGoogle Scholar
  15. Tang, B., 1998. Selecting Latin hypercubes using correlation criteria. Statistica Sinica, 8, 965–978.MathSciNetzbMATHGoogle Scholar
  16. Welch, W.J., 1985. ACED: Algorithms for the construction of experimental designs. The American Statistician, 39, 146.CrossRefGoogle Scholar
  17. Ye, K.Q., 1998. Orthogonal column Latin hypercubes and their application in computer experiments. Journal of the American Statistical Association, 93, 1430–1439.MathSciNetCrossRefGoogle Scholar

Copyright information

© Grace Scientific Publishing 2011

Authors and Affiliations

  1. 1.Department of StatisticsThe Ohio State UniversityColumbusUSA

Personalised recommendations