Journal of Statistical Theory and Practice

, Volume 5, Issue 3, pp 369–381 | Cite as

Evolutionary Dynamics on Graphs - the Effect of Graph Structure and Initial Placement on Mutant Spread

  • M. BroomEmail author
  • J. Rychtář
  • B. T. Stadler


We study the stochastic birth-death process in a finite and structured population and analyze how the fixation probability of a mutant depends on its initial placement. In particular, we study how the fixation probability depends on the degree of the vertex where the mutant is introduced, and which vertices are its neighbours. We find that within a fixed graph, the fixation probability of a mutant has a negative correlation with the degree of the starting vertex. For a general mutant fitness r, we give approximations of relative fixation probabilities in terms of the fixation probabilities of neighbours which will be useful for considering graphs of relatively simple structure but many vertices, for instance of the small world network type, and compare our approximations to simulation results. Further, we explore which types of graphs are conducive to mutant fixation and which are not. We find a high positive correlation between a fixation probability of a randomly placed mutant and the variation of vertex degrees on that graph.

AMS Subject Classification

05C57 05C82 


Birth-death process Fixation probability Heterogeneous graphs Small world networks 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Antal, T., Redner S., Sood, V., 2006. Evolutionary dynamics on degree heterogeneous graphs. Physical Review Letters, 96(18), 188104.CrossRefGoogle Scholar
  2. Barabási, A., Albert, R., 1999. Emergence of scaling in random networks. Science, 286(5439), 509–512.MathSciNetCrossRefGoogle Scholar
  3. Bewernick, R.L., Dewar, J.D., Gray, E., Rodriguez, N.J., Swift, R.J., 2007. On the representation of birth death processes with polynomial transition rates. Journal of Statistical Theory and Practice, 1(5), 227–231.MathSciNetCrossRefGoogle Scholar
  4. Bishop, D., Cannings, C., 1976. Models of animal conflict. Advances in Applied Probability, 8(4), 616–621.CrossRefGoogle Scholar
  5. Bollobás, B., Chung, F., 1988. The diameter of a cycle plus random matching. SIAM Journal on Discrete Mathematics, 1, 328–333.MathSciNetCrossRefGoogle Scholar
  6. Broom, M., Hadjichrysanthou, C., Rychtářr, J, 2010a. Evolutionary games on graphs and the speed of the evolutionary process. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 466(2117), 1327–1346.MathSciNetCrossRefGoogle Scholar
  7. Broom, M., Hadjichrysanthou, C., Rychtářr, J., Stadler, B.T., 2010b. Two results on evolutionary processes on general non-directed graphs. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 466(2121), 2795–2798.CrossRefGoogle Scholar
  8. Broom, M., Rychtářr, J., 2008. An analysis of the fixation probability of a mutant on special classes of non-directed graphs. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 464(2098), 2609–2627.MathSciNetCrossRefGoogle Scholar
  9. Broom, M., Rychtářr, J., Stadler, B., 2009. Evolutionary dynamics on small order graphs. Journal of Interdisciplinary Mathematics, 12, 129–140.CrossRefGoogle Scholar
  10. Chan, D., Hughes, B., Leong, A., Reed, W., 2003. Stochastically evolving networks. Physical Review E, 68(6), 066124.MathSciNetCrossRefGoogle Scholar
  11. Cressman, R., 1992. The stability concept of evolutionary game theory: A dynamic approach. Lecture Notes Biomath., 94, Springer-Verlag, Berlin.zbMATHGoogle Scholar
  12. Crossman, R.J., Coolen-Schrijner, P., Coolen, F.P.A., 2009. Time Homogeneous Birth-Death processes with probability intervals and absorbing state. Journal of Statistical Theory and Practice, 3(1), 103–118.MathSciNetCrossRefGoogle Scholar
  13. Durrett, R., 2007. Random Graph Dynamics, Volume 20. Cambridge University Press.zbMATHGoogle Scholar
  14. Erdös, P., Rényi, A., 1960. On the evolution of random graphs. Publ. Math. Inst. Hungarian Acad. Sci, 5, 17–61.MathSciNetzbMATHGoogle Scholar
  15. Fan, Z., Chen, G., 2004. Evolving network driven by node dynamics. International Journal of Modern Physics B, 18, 2540–2546.CrossRefGoogle Scholar
  16. Haigh, J., 1975. Game theory and evolution. Advances in Applied Probability, 7(1), 8–11.MathSciNetCrossRefGoogle Scholar
  17. Hampel, F., 2009. Nonadditive probabilities in statistics. Journal of Statistical Theory and Practice, 3(1), 11–23.MathSciNetCrossRefGoogle Scholar
  18. Hauert, C., Doebeli, M., 2004. Spatial structure often inhibits the evolution of cooperation in the snowdrift game. Nature, 428(6983), 643–646.CrossRefGoogle Scholar
  19. Hofbauer, J., Sigmund, K., 1998. Evolutionary Games and Population Dynamics. Cambridge University Press.CrossRefGoogle Scholar
  20. Kimura, M., 1985. The Neutral Theory of Molecular Evolution, Cambrigde University Press.Google Scholar
  21. Kimura, M., 1994. Population Genetics, Molecular Evolution, and the Neutral Theory: Selected Papers. Chicago University Press.Google Scholar
  22. Lieberman, E., Hauert, C., Nowak, M., 2005. Evolutionary dynamics on graphs. Nature, 433(7023), 312–316.CrossRefGoogle Scholar
  23. Maynard Smith, J., 1982. Evolution and the Theory of Games. Cambridge University Press.CrossRefGoogle Scholar
  24. Maynard Smith, J., Price, G., 1973. The logic of animal conflict. Nature, 246(5427), 15–18.CrossRefGoogle Scholar
  25. Moran, P., 1958. Random processes in genetics. In Mathematical Proceedings of the Cambridge Philosophical Society, Volume 54, 60–71. Cambridge University Press.Google Scholar
  26. Nagylaki, T., Lucier, B., 1980. Numerical analysis of random drift in a cline. Genetics, 94(2), 497–517.MathSciNetGoogle Scholar
  27. Newman, M., Barabási, A., Watts, D., 2006. The Structure and Dynamics of Networks: (Princeton Studies in Complexity). Princeton University Press.Google Scholar
  28. Newman, M., Watts, D., 1999. Renormalization group analysis of the small-world network model. Physics Letters A, 263(4–6), 341–346.MathSciNetCrossRefGoogle Scholar
  29. Nowak, M., 2006. Evolutionary Dynamics: Exploring the Equations of Life. Belknap Press.zbMATHGoogle Scholar
  30. Ohtsuki, H., Nowak, M., 2006. Evolutionary games on cycles. Proceedings of the Royal Society B: Biological Sciences, 273(1598), 2249–2256.CrossRefGoogle Scholar
  31. Paley, C., Tarashkin, S., Elliot, S., 2007. Temporal and dimensional effects in evolutionary graph theory. Physical Review Letters, 98(9), 98103.CrossRefGoogle Scholar
  32. Rychtářr, J., Stadler, B., 2008. Evolutionary dynamics on small-world networks. International Journal of Computational and Mathematical Sciences, 2(1), 1–4.MathSciNetzbMATHGoogle Scholar
  33. Santos, F., Pacheco, J., Lenaerts, T., 2006. Evolutionary dynamics of social dilemmas in structured heterogeneous populations. Proceedings of the National Academy of Sciences of the United States of America, 103(9), 3490–3494.CrossRefGoogle Scholar
  34. Shakarian, P., Roos, P., 2011. Fast and deterministic computation of fixation probability in evolutionary graphs. The International Conference on Computational Intelligence and Bioinformatics (CIB-11).CrossRefGoogle Scholar
  35. Southwell, R., Cannings, C., 2010a. Some models of reproducing graphs: I pure reproduction. Applied Mathematics, 1(3), 137–145.CrossRefGoogle Scholar
  36. Southwell, R., Cannings, C. 2010b. Some models of reproducing graphs: Ii age capped vertices. Applied Mathematics, 1(4), 251–259.CrossRefGoogle Scholar
  37. Watts, D., Strogatz, S., 1998. Collective dynamics of “small-world” networks. Nature, 393(6684), 440–442.CrossRefGoogle Scholar

Copyright information

© Grace Scientific Publishing 2011

Authors and Affiliations

  1. 1.Centre for Mathematical ScienceCity University LondonLondon, EC1V 0HBUK
  2. 2.Department of Mathematics and StatisticsThe University of North Carolina GreensboroGreensboroUSA
  3. 3.Department of Computer ScienceThe University of North Carolina GreensboroGreensboroUSA

Personalised recommendations