Advertisement

Journal of Statistical Theory and Practice

, Volume 4, Issue 2, pp 279–287 | Cite as

Bayesian Estimation of the Parameter of Maxwell Distribution under Different Loss Functions

  • Sanku Dey
  • Sudhansu S. Maiti
Article

Abstract

In this paper, Bayes estimators of parameter of Maxwell distribution have been derived by considering non-informative as well as conjugate priors under different scale invariant loss functions, namely, Quadratic Loss Function, Squared-Log Error Loss Function and Modified Linear Exponential Loss Function. The risk functions of these estimators have been studied.

AMS Subject Classification

62F15 65C05 

Keywords

Maxwell distribution Conjugate prior MLINEX loss function Non-informative prior Posterior density Quadratic loss function Risk function Squared-log error loss function 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Awad, A.M., Gharraf, M.K., 1986. Estimation of P[Y < X] in the Burr case: A comparative study. Communications in Statistics — Simulation and Computation, 15, 189–203.MathSciNetzbMATHGoogle Scholar
  2. Bekker, A., Roux, J.J.J., 2005. Reliability Characteristics of the Maxwell Distribution: A Bayes Estimation Study. Communications in Statistics — Theory and Methods, 34, 2169–2178.MathSciNetCrossRefGoogle Scholar
  3. Brown, L.D., 1968. Inadmissibility of the usual estimators of scale parameters in problems with unknown location and scale parameters. Annals of Mathematical Statistics, 39, 29–48.MathSciNetCrossRefGoogle Scholar
  4. Chaturvedi, A., Rani, U., 1998. Classical and Bayesian Reliability estimation of the generalized Maxwell failure distribution. Journal of Statistical Research, 32, 113–120.MathSciNetGoogle Scholar
  5. Lehmann, E.L., 1983. Theory of Point Estimation. John Wiley, New York.CrossRefGoogle Scholar
  6. Lindley, D.V., 1969. Introduction to Probability and Statistics from a Bayesian View Point, Vol. 1. Cambridge University Press, Cambridge.Google Scholar
  7. Podder, C.K., Roy, M.K., 2003. Bayesian estimation of the parameter of Maxwell distribution under MLINEX loss function. Journal of Statistical Studies, 23, 11–16.MathSciNetGoogle Scholar
  8. Tyagi, R.K., Bhattacharya, S.K., 1989a. Bayes estimation of the Maxwell’s velocity distribution function. Statistica, anno XLIX, 4, 563–567.zbMATHGoogle Scholar
  9. Tyagi, R.K., Bhattacharya, S.K., 1989b. A Note on the MVU estimation of reliability for the Maxwell failure distribution. Estadistica, 41, 137, 73–79.MathSciNetGoogle Scholar

Copyright information

© Grace Scientific Publishing 2010

Authors and Affiliations

  1. 1.Department of StatisticsSt. Anthony’s CollegeMeghalayaIndia
  2. 2.Department of StatisticsVisva-Bharati UniversityWest BengalIndia

Personalised recommendations