Journal of Statistical Theory and Practice

, Volume 2, Issue 3, pp 333–337 | Cite as

Introduction to Semiparametric Methods

  • Benjamin KedemEmail author
  • Guanhua Lu


We introduce the main ideas discussed in this special issue on semiparametric and related topics. Special emphasis is put on the connection with weighted distributions.

AMS Subject Classification

62D05 62F10 62F05 62F30 62G05 62G07 62G08 62G20 62M10 


Density ratio nonparametric deconvolution wavelet recursive least squares high valued observations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bickel, P.J., Klaassen, C.A.J., Ritov, Y., Wellner, J.A., 1998. Efficient and Adaptive Estimation for Semi-parametric Models, Springer, New York.zbMATHGoogle Scholar
  2. Fokianos, K., 2004. Merging information for semiparametric density estimation. Journal of the Royal Statistical Society B 66, 941–958.MathSciNetCrossRefGoogle Scholar
  3. Fokianos, K., Kedem, B., Qin, J., Short, D.A., 2001. A semiparametric approach to the one-way layout. Technometrics, 43, 56–65.MathSciNetCrossRefGoogle Scholar
  4. Gilbert, P.B., 2000. Large sample theory of maximum likelihood estimates in semiparametric biased sampling models. Annals of Statistics, 28, 151–194.MathSciNetCrossRefGoogle Scholar
  5. Gilbert, P.B., Lele, S.R., Vardi, Y., 1999. Maximum likelihood estimation in semiparametric selection bias models with application to AIDS vaccine trials. Biometrika, 86, 27–43.MathSciNetCrossRefGoogle Scholar
  6. Gill, R.D., Vardi, Y., Wellner, J.A., 1988. Large sample theory of empirical distributions in biased sampling models. Annals of Statistics, 16, 1069–1112.MathSciNetCrossRefGoogle Scholar
  7. Kedem, B., Wen, S., 2007. Semi-parametric cluster detection. Journal of Statistical Theory and Practice, 1 (1), 49–72.MathSciNetCrossRefGoogle Scholar
  8. Lu, G., 2007. Asymptotic Theory for Multiple-Sample Semiparametric Density Ratio Models and Its Application to Mortality Forecasting. PhD Dissertation, University of Maryland, College Park.Google Scholar
  9. Patil, G.P., Rao, C.R., 1977. The weighted distributions: A survey of their applications. Applications of Statistics, Ed. P.R. Krishnaiah, 383–405. Amsterdam: North-Holland.Google Scholar
  10. Prentice, R.L., Pyke, R., 1979. Logistic disease incidence models and case-control studies. Biometrika, 66, 403–411.MathSciNetCrossRefGoogle Scholar
  11. Qin, J., 1998. Inferences for case-control and semiparametric two-sample density ratio models. Biometrika, 85, 619–630.MathSciNetCrossRefGoogle Scholar
  12. Qin, J., Zhang, B., 1997. A Goodness of fit test for logistic regression models based on case-control data. Biometrika, 84, 609–618.MathSciNetCrossRefGoogle Scholar
  13. Rao, C.R., 1985. Weighted distributions arising out of methods of ascertainment. in A Celebration of Statistics, A.C. Atkinson & S.E. Fienberg, eds, Springer-Verlag, New York, Chapter 24, pp. 543–569.CrossRefGoogle Scholar
  14. van der Vaart, A.W., Wellner, J.A., 2001. Consistency of semiparametric maximum likelihood estimators for two-phase sampling. The Canadian Journal of Statistics, 29, 269–288.MathSciNetCrossRefGoogle Scholar
  15. Vardi, Y., 1982. Nonparametric estimation in the presence of length bias. Annals of Statistics, 10, 616–620.MathSciNetCrossRefGoogle Scholar
  16. Vardi, Y., 1985. Empirical distribution in selection bias models. Annals of Statistics, 13, 178–203.MathSciNetCrossRefGoogle Scholar
  17. Zhang, B., 2000. Quantile estimation under a two-sample semi-parametric model. Bernoulli, 6, 491–511.MathSciNetCrossRefGoogle Scholar

Copyright information

© Grace Scientific Publishing 2008

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of MarylandCollege ParkUSA

Personalised recommendations