Journal of Statistical Theory and Practice

, Volume 2, Issue 2, pp 233–251 | Cite as

Empirical Evidence on Student-t Log-Returns of Diversified World Stock Indices

  • Eckhard PlatenEmail author
  • Renata Rendek


The aim of this paper is to document some empirical facts related to log-returns of diversified world stock indices when these are denominated in different currencies. Motivated by earlier results, we have obtained the estimated distribution of log-returns for a range of world stock indices over long observation periods. We expand previous studies by applying the maximum likelihood ratio test to the large class of generalized hyperbolic distributions, and investigate the log-returns of a variety of diversified world stock indices in different currency denominations. This identifies the Student-t distribution with about four degrees of freedom as the typical estimated log-return distribution of such indices. Owing to the observed high levels of significance, this result can be interpreted as a stylized empirical fact.


Diversified world stock index growth optimal portfolio log-return distribution Student-t distribution generalized hyperbolic distribution likelihood ratio test 

AMS Subject Classification

62F03 62P20 91B28 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abramowitz, M., I. A. Stegun (eds.), 1972. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York.zbMATHGoogle Scholar
  2. Barndorff-Nielsen, O., 1978. Hyperbolic distributions and distributions on hyperbolae. Scand. J. Statist. 5, 151–157.MathSciNetzbMATHGoogle Scholar
  3. Barndorff-Nielsen, O., 1995. Normal-Inverse Gaussian processes and the modelling of stock returns. Technical Report 300, University of Aarhus.Google Scholar
  4. Basle, 1996. Amendment to the Capital Accord to Incorporate Market Risks. Basle Committee on Banking and Supervision, Basle, Switzerland.Google Scholar
  5. Black, F., Scholes, M., 1973. The pricing of options and corporate liabilities. J. Political Economy 81, 637–654.MathSciNetCrossRefGoogle Scholar
  6. Blattberg, R. C., Gonedes, N., 1974. A comparison of the stable and student distributions as statistical models for stock prices. J. Business 47, 244–280.CrossRefGoogle Scholar
  7. Clark, P. K., 1973. A subordinated stochastic process model with finite variance for speculative prices. Econometrica 41, 135–159.MathSciNetCrossRefGoogle Scholar
  8. Eberlein, E., Keller, U., 1995. Hyperbolic distributions in finance. Bernoulli 1, 281–299.CrossRefGoogle Scholar
  9. Fergusson, K., Platen, E., 2006. On the distributional characterization of log-returns of a world stock index. Appl. Math. Finance 13(1), 19-38.Google Scholar
  10. Fernholz, E. R., 2002. Stochastic Portfolio Theory, Volume 48 of Appl. Math. Springer.CrossRefGoogle Scholar
  11. Filipovic̀, D. Z., Platen, E., 2007. Consistent market extensions under the benchmark approach. Technical Report QFRC 189, University of Technology, Sydney.Google Scholar
  12. Hurst, S. R., Platen, E., 1997. The marginal distributions of returns and volatility. In Y. Dodge (Ed.), L 1-Statistical Procedures and Related Topics, Volume 31 of IMS Lecture Notes — Monograph Series, pp. 301–314. Institute of Mathematical Statistics Hayward, California.Google Scholar
  13. Kelly, J. R., 1956. A new interpretation of information rate. Bell Syst. Techn. J. 35, 917–926.MathSciNetCrossRefGoogle Scholar
  14. Kelly, L., E. Platen, Sørensen, M., 2004. Estimation for discretely observed diffusions using transform functions. In Stochastic Methods and Their Applications, Volume 41A of J. Appl. Probab., pp. 99–118. Applied Prob. Trust.Google Scholar
  15. Kuchler, U., Neumann, K., Sørensen, M., Streller, A., 1999. Stock returns and hyperbolic distributions. Math. Comput. Modelling 29, 1–15.MathSciNetCrossRefGoogle Scholar
  16. Le, T., Platen, E., 2006. Approximating the growth optimal portfolio with a diversified world stock index. Journal of Risk Finance 7 (5), 559–574.CrossRefGoogle Scholar
  17. Madan, D., Seneta, E., 1990. The variance gamma (V.G.) model for share market returns. J. Business 63, 511–524.CrossRefGoogle Scholar
  18. Mandelbrot, B., 1963. The variation of certain speculative prices. J. Business 36, 394–419. Reprinted in Cootner (1964), Chapter15, 307-337.CrossRefGoogle Scholar
  19. Markowitz, H., N. Usmen, 1996a. The likelihood of various stock market return distributions, Part 1: Principles of inference. J. Risk & Uncertainty 13(3), 207-219.Google Scholar
  20. Markowitz, H., Usmen, N., 1996b. The likelihood of various stock market return distributions, Part 2: Empirical results. J. Risk & Uncertainty 13(3), 221–247.CrossRefGoogle Scholar
  21. McNeil, A., Frey, R., Embrechts P., 2005. Quantitative Risk Management. Princeton University Press.zbMATHGoogle Scholar
  22. Merton, R. C., 1973. An intertemporal capital asset pricing model. Econometrica 41, 867–888.MathSciNetCrossRefGoogle Scholar
  23. Platen, E., 2001. A minimal financial market model. In Trends in Mathematics, pp. 293–301. Birkhäuser.Google Scholar
  24. Platen, E., 2002. Arbitrage in continuous complete markets. Adv. in Appl. Probab. 34(3), 540–558.MathSciNetCrossRefGoogle Scholar
  25. Platen, E., 2004. Modeling the volatility and expected value of a diversified world index. Int. J. Theor. Appl. Finance 7(4), 511–529.MathSciNetCrossRefGoogle Scholar
  26. Platen, E., 2005. Diversified portfolios with jumps in a benchmark framework. Asia-Pacific Financial Markets 11(1), 1–22.CrossRefGoogle Scholar
  27. Platen, E., Heath, D., 2006. A Benchmark Approach to Quantitative Finance. Springer Finance. Springer.CrossRefGoogle Scholar
  28. Platen, E., Stahl, G., 2003. A structure for general and specific market risk. Computational Statistics 18(3), 355–373.MathSciNetCrossRefGoogle Scholar
  29. Praetz, P. D., 1972. The distribution of share price changes. J. Business 45, 49–55.CrossRefGoogle Scholar
  30. Rao, C. R., 1973. Linear Statistical Inference and Its Applications (2nd ed.). Wiley, New York.CrossRefGoogle Scholar
  31. Samuelson, P. A., 1957. Intertemporal price equilibrium: A prologue to the theory of speculation. Weltwirtschaftliches Archiv 79, 181–221.Google Scholar

Copyright information

© Grace Scientific Publishing 2008

Authors and Affiliations

  1. 1.School of Finance and Economics and Department of Mathematical SciencesUniversity of TechnologySydneyAustralia
  2. 2.School of Finance and EconomicsUniversity of TechnologySydneyAustralia

Personalised recommendations