Advertisement

Journal of Statistical Theory and Practice

, Volume 2, Issue 2, pp 183–197 | Cite as

Alternative Approaches for the Transient Analysis of Markov Chains with Catastrophes

  • Antonis Economou
  • Demetris Fakinos
Article
  • 1 Downloads

Abstract

In this paper we present various approaches for the transient analysis of a Markovian population process with total catastrophes. We discuss the pros and the cons of these methodologies and point out how they lead to different tractable extensions. As an illustrating example, we consider the nonhomogeneous Poisson process with total catastrophes. The extension of the probabilistic methodologies for analyzing models with binomial catastrophes is also discussed.

Key-words

Catastrophes Disasters Non-homogeneous Poisson process Markov chain Renewal process Renewal equation Point process Order statistics property Backward recurrence time Age 

AMS Subject Classification

60J27 60J22 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Artalejo, J. R., Economou, A., Lopez-Herrero, M. J., 2007. Evaluating growth measures in an immigration process subject to binomial and geometric catastrophes. Mathematical Biosciences and Engineering 4, 573–594.MathSciNetCrossRefGoogle Scholar
  2. Bartoszynski, R., Buhler, W. J., Chan W., Pearl, D. K., 1989. Population processes under the influence of disasters occurring independently of population size. J. Math. Biol. 27, 179–190.MathSciNetCrossRefGoogle Scholar
  3. Berg, M., Spizzichino, F., 2000. Time-lagged point processes with the order-statistics property. Math. Meth. Oper. Res. 51, 301–314.MathSciNetCrossRefGoogle Scholar
  4. Brockwell, P. J., 1986. The extinction time of a general birth and death process with catastrophes. J. Appl. Prob. 23, 851–858.MathSciNetCrossRefGoogle Scholar
  5. Brockwell, P. J., Gani, J., Resnick, S. I., 1982. Birth, immigration and catastrophe processes. Adv. Appl. Prob. 14, 709–731.MathSciNetCrossRefGoogle Scholar
  6. Chang, I., Krinik, A., Swift, R. J., 2007, Birth-multiple catastrophe processes. J. Stat. Plann. Inference 137, 1544–1559.MathSciNetCrossRefGoogle Scholar
  7. Chao, X., Zheng, Y., 2003. Transient analysis of immigration-birth-death process with total catastrophes. Prob. Eng. Inform. Sci. 17, 83–106.CrossRefGoogle Scholar
  8. Economou, A., Fakinos, D., 2003. A continuous-time Markov chain under the influence of a regulating point process and applications. Europ. J. Operat. Res. 149, 625–640.CrossRefGoogle Scholar
  9. Economou, A., 2004. The compound Poisson immigration process subject to binomial catastrophes. J. Appl. Prob. 41, 508–523.MathSciNetCrossRefGoogle Scholar
  10. Gani, J., Swift, R. J., 2006. A simple approach to birth processes with random catastrophes. J. Combin. Inform. System Sci. 31, 1–7.MathSciNetzbMATHGoogle Scholar
  11. Gani, J., Swift, R. J., 2007. Death and birth-death and immigration processes with catastrophes. J. Statist. Theory Pract. 1, 39–48.MathSciNetCrossRefGoogle Scholar
  12. Hanson, F. B., Tuckwell, H. C., 1997. Population growth with randomly distributed jumps. J. Math. Biol. 36, 169–187.MathSciNetCrossRefGoogle Scholar
  13. Huang, W., Shoung, J., 1994. On a study of some properties of point processes. Sankhya Ser. A 56, 67–76.MathSciNetzbMATHGoogle Scholar
  14. Krinik, A., Mortensen, C., 2007. Transient probability functions of finite birth-death processes with catastrophes. J. Statist. Plann. Inference 137, 1530–1543.MathSciNetCrossRefGoogle Scholar
  15. Krinik, A., Rubino, G., Marcus, D., Swift, R., Kasfy, H., Lam, H., 2005. Dual processes to solve single server systems. J. Statist. Plann. Inference 135, 121–147.MathSciNetCrossRefGoogle Scholar
  16. Krishna Kumar, B., Arivudainambi, D., 2000. Transient solution of an M/M/1 queue with catastrophes. Comp. Math. Appl. 40, 1233–1240.MathSciNetCrossRefGoogle Scholar
  17. Kyriakidis, E. G., 1994. Stationary probabilities for a simple immigration-birth-death process under the influence of total catastrophes. Statist. Prob. Letters 20, 239–240.MathSciNetCrossRefGoogle Scholar
  18. Kyriakidis, E. G., 2001. The transient probabilities of the simple immigration-catastrophe process. Math. Scientist 26, 56–58.MathSciNetzbMATHGoogle Scholar
  19. Latouche, G., Ramaswami, V., 1999. Introduction to Matrix Analytic Methods in Stochastic Modeling. SIAM, Philadelphia.CrossRefGoogle Scholar
  20. Lee, C., 2000. The density of the extinction probability of a time homogeneous linear birth and death process under the influence of randomly occuring disasters. Math. Biosci. 164, 93–102.MathSciNetCrossRefGoogle Scholar
  21. Puri, P. S., 1982. On the characterization of point processes with the order statistics property without moment condition. J. Appl. Prob. 19, 39–51.MathSciNetCrossRefGoogle Scholar
  22. Ross, S. M., 1970. Applied Probability Models with Optimization Applications. Holden-Day, San Francisco.zbMATHGoogle Scholar
  23. Stirzaker, D., 2001. Disasters. Math. Scientist 26, 59–62.MathSciNetzbMATHGoogle Scholar
  24. Stirzaker, D., 2006. Processes with catastrophes. Math. Scientist 31, 107–118.MathSciNetzbMATHGoogle Scholar
  25. Stirzaker, D., 2007. Processes with random regulation. Prob. Eng. Inform. Sci. 21, 1–17.MathSciNetCrossRefGoogle Scholar
  26. Swift, R. J., 2000. A simple immigration-catastrophe process. Math. Scientist 25, 32–36.MathSciNetzbMATHGoogle Scholar
  27. Swift, R. J., 2001. Transient probabilities for a simple birth-death-immigration process under the influence of total catastrophes. Int. J. Math. Sci. 25, 689–692.MathSciNetCrossRefGoogle Scholar
  28. Switkes, J., 2004. An unbiased random walk with catastrophe. Math. Scientist 29, 115–121.MathSciNetzbMATHGoogle Scholar
  29. Tijms, H. C., 1994. Stochastic Models: An Algorithmic Approach. Wiley.zbMATHGoogle Scholar

Copyright information

© Grace Scientific Publishing 2008

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of AthensAthensGreece

Personalised recommendations