Advertisement

Some Families of Estimators of Variance of Stratified Random Sample Mean Using Auxiliary Information

  • Housila P. Singh
  • Gajendra K. Vishwakarma
Article

Abstract

In this paper we have considered the problem of estimating the variance of the stratified random sample mean using information on a supplementary variate x. Various classes of estimators have been proposed and their properties are studied. It has been shown that the proposed classes of estimators are more efficient than usual unbiased estimator. An empirical study is carried out in support of the present study.

AMS Subject Classification

62D05 

Keywords

Auxiliary variate Study variate MSE Bias SRSWR 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Biradar, R.S., Singh, H.P., 1994. An alternative to ratio estimator for population variance. Assam Statist. Rev., 8 (2), 18–33.Google Scholar
  2. Das, A.K., Tripathi, T.P., 1978. Use of auxiliary information in estimating the finite population variance. Sankhya, 40 (C), 139–148.MATHGoogle Scholar
  3. Isaki, C.T., 1983. Variance estimation using auxiliary information. Jour. Amer. Statist. Assoc., 78, 117–123.MathSciNetCrossRefGoogle Scholar
  4. Kreweski, D., 1978. On the stability of some replication variance estimators in the linear case. Jour. Statist. Plann. Inf., 2, 45–51.MathSciNetCrossRefGoogle Scholar
  5. Prasad, B., Singh, H.P., 1990. Some improved ratio-type estimators of population variance using auxiliary information in sample surveys. Commun. Statist.-Theor. Meth., 21 (5), 1367–1376.CrossRefGoogle Scholar
  6. Singh, D., Chaudhary, F.S., 1986. Theory and Analysis of Sample Survey Designs. Wiley Eastern limited, New Delhi.Google Scholar
  7. Singh, H.P., Biradar, R.S., 1994. Estimation of finite population variance using auxiliary information. Jour. Ind. Soc. Statist. Opers. Res., 15 (1–4), 47–63.MATHGoogle Scholar
  8. Singh, H.P., Ruiz Espejo, M., 1999. A class of PPS estimators of population variance using auxiliary information. Rev. Roy. Acad. Cienc. Exact. Fis. Nat. (Esp) Mathematics, 39 (2), 217–220.MathSciNetMATHGoogle Scholar
  9. Singh, H.P., Upadhyaya, L.N., Namjoshi, U.D., 1988. Estimation of finite population variance. Current Science, 57 (24), 1331–1334.Google Scholar
  10. Singh, R., Mangat, N.S., 1996. Element of Survey Sampling. Kluwer Academic Publishers, London.CrossRefGoogle Scholar
  11. Singh, R.K., 1982. On estimating ratio and product of population parameters. Cal. Statist. Assoc. Bull., 31, 69–76.MathSciNetCrossRefGoogle Scholar
  12. Srivastava, S.K., 1971. A generalized estimator for the mean of a finite population using multi-auxiliary information. Jour. Amer. Statist. Assoc., 66, 404–407.CrossRefGoogle Scholar
  13. Srivastava, S.K., 1980. A class of estimators using auxiliary information in sample surveys. Canad. Jour. Statist., 8, 253–254.MathSciNetCrossRefGoogle Scholar
  14. Srivastava, S.K., Jhajj, H.S., 1980. A class of estimators using auxiliary information for estimating finite population variance. Sankhya 42 (C), 87–96.MATHGoogle Scholar
  15. Srivastava, S.K., Jhajj, H.S., 1981. A class of estimators of the population mean in survey sampling using auxiliary information. Biometrika, 68, 341–343.MathSciNetCrossRefGoogle Scholar
  16. Srivastava, S.K., Jhajj, H.S., 1983a. Class of estimators of mean and variance using auxiliary information when correlation coefficient is known. Biometrical Jour., 24 (4), 401–409.MathSciNetMATHGoogle Scholar
  17. Srivastava, S.K., Jhajj, H.S., 1983b. A class of estimators of the population mean using multi-auxiliary information. Cal. Statist. Assoc. Bull., 32, 47–56.MathSciNetCrossRefGoogle Scholar
  18. Upadhyaya, L.N., Singh, H.P., 1983. Use of auxiliary information in the estimation of population variance. Math. Forum., 6 (2), 33–36.Google Scholar
  19. Upadhyaya, L.N., Singh, H.P., 1986. On a dual to ratio estimator for estimating finite population variance. Nepalese Mathematical Scientific Report, 11 (1), 37–42.MathSciNetMATHGoogle Scholar

Copyright information

© Grace Scientific Publishing 2008

Authors and Affiliations

  1. 1.School of Studies in StatisticsVikram UniversityUjjainIndia
  2. 2.School of Studies in StatisticsVikram UniversityUjjainIndia

Personalised recommendations